留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两种芽孢杆菌对谷类作物秸秆微贮效果的影响

李青洋 邱胜男 唐云梦 李春杰 孙海霞

李青洋,邱胜男,唐云梦,等. 两种芽孢杆菌对谷类作物秸秆微贮效果的影响[J]. 土壤与作物,2023,12(2):153 − 160 doi: 10.11689/sc.2022102001
引用本文: 李青洋,邱胜男,唐云梦,等. 两种芽孢杆菌对谷类作物秸秆微贮效果的影响[J]. 土壤与作物,2023,12(2):153 − 160 doi: 10.11689/sc.2022102001
LI Q Y,QIU S N,TANG Y M,et al. Effects of two Bacillus species on the micro-silage of cereal straw[J]. Soils and Crops,2023,12(2):153 − 160 doi: 10.11689/sc.2022102001
Citation: LI Q Y,QIU S N,TANG Y M,et al. Effects of two Bacillus species on the micro-silage of cereal straw[J]. Soils and Crops,2023,12(2):153 − 160 doi: 10.11689/sc.2022102001

两种芽孢杆菌对谷类作物秸秆微贮效果的影响

doi: 10.11689/sc.2022102001
基金项目: 中国科学院战略性先导科技专项(XDA26040202).
详细信息
    作者简介:

    李青洋(1999−),男,硕士研究生,研究方向为秸秆饲料化利用. E-mail:liqingyang@iga.ac.cn

    通讯作者:

    孙海霞(1974−),女,研究员,研究方向为草地放牧家畜营养及饲草营养价值评价. E-mail:sunhx@iga.ac.cn

  • 中图分类号: S141.4

Effects of two Bacillus species on the micro-silage of cereal straw

  • 摘要:

    利用微生物处理作物秸秆是秸秆饲料化利用的重要途径,对于实现秸秆饲料资源的高效安全利用、促进草食家畜生产具有重要意义。本研究以玉米、水稻和小麦秸秆为研究对象,利用枯草芽孢杆菌和贝莱斯芽孢杆菌及其组合对这三种作物秸秆进行45天发酵试验,以期评价两种芽孢杆菌对不同秸秆纤维降解和微贮效果的影响。结果表明,贝莱斯芽孢杆菌处理对三种秸秆纤维降解有显著影响,与对照组相比,贝莱斯芽孢杆菌使玉米秸秆中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)和酸性洗涤木质素(ADL)分别降低了7.31%、12.0%和21.4%,水稻秸秆分别降低了9.25%、16.0%和43.0%,小麦秸秆ADF下降6.52%;枯草芽孢杆菌处理使玉米秸秆NDF、ADF和ADL分别下降7.19%、13.1%和24.8%;小麦秸秆ADF下降6.96%,但其对水稻秸秆无显著影响,两种芽孢杆菌混合处理没有单菌处理效果显著。两种芽孢杆菌处理秸秆发酵产物中挥发性脂肪酸(VFAs)以乙酸和丁酸为主,未检测到乳酸。贝莱斯芽孢杆菌和枯草芽孢杆菌均能显著降低玉米和小麦秸秆NDF和ADF含量,但由于发酵产物丁酸的存在降低了发酵品质,因此,为了改善微贮质量,未来需探讨两种芽孢杆菌与其它菌种复合效果。

     

  • 表  1  试验处理

    Table  1.   Experimental treatment

    处理
    Treatment
    组合方式
    Composition
    (A) 对照组
    Control group
    秸秆(50 g)+无菌培养基(18 mL无菌LB培养基∶72 mL无菌水)
    Straw (50 g)+ sterile medium (18 mL sterile LB medium∶72 mL sterile water)
    (B) 贝莱斯芽孢杆菌组
    Bacillus velezensis group
    秸秆(50 g)+贝莱斯芽孢杆菌稀释液(18 mL原液∶72 mL无菌水)
    Straw (50 g) + Bacillus velezensis diluent (18 mL stock solution∶72 mL sterile water)
    (C) 枯草芽孢杆菌组
    Bacillus subtilis group
    秸秆(50 g)+枯草芽孢杆菌稀释液(18 mL原液∶72 mL无菌水)
    Straw (50 g) + Bacillus subtilis diluent (18 mL stock solution∶72 mL sterile water)
    (D) 贝莱斯芽孢杆菌+枯草芽孢杆菌组
    Bacillus velezensis and Bacillus subtilis group
    秸秆(50 g)+混合菌液稀释液(18 mL(1∶1)混合菌液∶72 mL无菌水)
    Straw (50 g) + diluent of mixed bacterial solution (18 mL(1∶1) mixed
    bacterial solution∶72 mL sterile water)
    下载: 导出CSV

    表  2  三种秸秆原料的化学成分

    Table  2.   Chemical composition of corn, rice and wheat straw

    化学成分
    Chemical component
    玉米秸秆
    Corn straw
    水稻秸秆
    Rice straw
    小麦秸秆
    Wheat straw
    干物质 Dry matter/%93.9692.8793.83
    总碳 Total carbon/%42.6437.4541.09
    总氮 Total nitrogen/%1.342.150.77
    中性洗涤纤维 Neutral detergent fiber/%85.1373.0588.93
    酸性洗涤纤维 Acid detergent fiber/%53.6145.3259.21
    酸性洗涤木质素 Acid detergent lignin/%12.786.9513.54
    下载: 导出CSV

    表  3  缓冲液成分

    Table  3.   Composition of buffers g·L−1

    缓冲液A
    Buffer A
    含量
    Content
    缓冲液B
    Buffer B
    含量
    Content
    KH2PO410Na2CO315
    MgSO4·7H2O0.5Na2S·9H2O1
    NaCl0.5
    CaCl2·2H2O0.1
    Urea0.5
    下载: 导出CSV

    表  4  不同芽孢杆菌条件下三种秸秆的化学组成

    Table  4.   Chemical composition of three kinds of straw under different Bacillus conditions

    玉米秸秆
    Corn straw
    水稻秸秆
    Rice straw
    小麦秸秆
    Wheat straw
    ABCD PABCD PABCDP
    DM/%33.7±0.1633.6±0.1634.3±0.2334.3±0.340.09332.7±0.09a31.4±0.42b31.0±0.12b32.8±0.08a0.00134.0±0.0434.3±0.0134.6±0.1035.4±0.910.273
    TC/%43.8±1.0442.6±0.3641.9±0.5243.0±0.070.22140.1±0.1540.0±0.1640.0±0.1039.8±0.050.47742.4±0.1542.0±0.3041.8±0.4642.2±0.120.526
    TN/%1.50±0.071.52±0.101.56±0.121.51±0.020.9622.35±0.11a1.45±0.03b1.63±0.09b2.49±0.03a<0.010.66±0.050.65±0.010.62±0.040.64±0.020.871
    NDF/%86.2±0.68a79.9±0.61b80.0±0.61b84.6±0.81a<0.0184.3±0.52a76.5±1.60b86.8±1.81a81.6±0.81ab0.00376.8±0.59b79.4±0.55a80.7±0.42a80.6±0.41a0.001
    ADF/%56.5±0.63a49.7±0.36c49.1±0.58c52.8±0.95b<0.0154.3±0.86a45.6±0.49c51.0±0.91ab50.1±1.08b0.00167.5±0.81a63.1±0.51b62.8±0.80b64.7±0.23ab0.003
    ADL/%14.5±0.86a11.4±0.04b10.9±0.61b13.0±0.53ab0.0114.2±1.16a8.10±0.61b11.0±0.28ab11.7±1.09ab0.00719.2±0.9017.6±1.3319.1±1.1517.0±1.100.470
    IVDMD/%66.1±2.3862.1±2.0866.0±0.7262.9±1.170.30764.1±1.0265.1±1.4163.6±0.8663.8±0.440.74852.0±3.3850.4±2.1749.4±0.1449.7±1.030.808
    注:A:对照组;B:贝莱斯芽孢杆菌处理组;C:枯草芽孢杆菌处理组;D:两种芽孢杆菌混合处理组;P:判定假设检验结果的参数。DM代表干物质;TC代表总碳;TN代表总氮;NDF代表中性洗涤纤维;ADF代表酸性洗涤纤维;ADL代表酸性洗涤木质素;IVDMD代表体外干物质消化率。不同小写字母代表同种作物秸秆下不同处理间差异达到显著水平(P<0.05)。下同。
    Note: A: Control group; B: Bacillus velezensis treatment group; C: Bacillus subtilis treatment group; D: Two kinds of Bacillus mixed treatment group; P: The parameters that determine the results of the hypothesis test. DM indicates dry matter; TC indicates total carbon; TN indicates total nitrogen; NDF indicates neutral detergent fiber;ADF indicates acid detergent fiber;ADL indicates acid detergent lignin; IVDMD indicates In vitro dry matter digestibility. Different small letters indicate significant differences between treatments in the same crop straw at P<0.05. The same is as below.
    下载: 导出CSV

    表  5  不同芽孢杆菌对三种秸秆发酵品质的影响

    Table  5.   Fermentation quality of three kinds of straw under different Bacillus conditions

    玉米秸秆
    Corn straw
    水稻秸秆
    Rice straw
    小麦秸秆
    Wheat straw
    ABCD PABCD PABCDP
    pH4.61±0.064.55±0.054.56±0.124.44±0.070.5665.07±0.104.80±0.064.74±0.064.89±0.070.0644.77±0.03ab4.92±0.07a4.68±0.05b4.65±0.05b0.021
    铵态氮/总氮
    NH3-N/TN /%
    2.67±0.392.47±0.442.80±0.372.47±0.320.1774.85±0.78a3.43±0.28b2.18±0.56c3.86±0.02b0.0014.90±0.85b6.11±0.21a3.89±0.46c3.87±0.30c0.001
    乙酸
    Acetic acid/%
    0.58±0.370.43±0.190.80±0.660.44±0.510.7410.59±0.270.86±0.040.73±0.280.87±0.210.413N.D.0.51±0.15a0.19±0.09c0.40±0.09ab0.001
    丁酸
    Butyric acid/%
    1.05±0.121.81±0.291.87±1.330.91±0.710.3480.43±0.17b1.12±0.40a1.18±0.27a1.18±0.24a0.0310.11±0.18b1.54±0.16a1.04±0.30a1.48±0.82a0.017
    注:N.D.代表未检出。
    Note: N.D. indicates not detected.
    下载: 导出CSV
  • [1] 张晓庆,王梓凡,参木友,等. 中国农作物秸秆产量及综合利用现状分析[J]. 中国农业大学学报,2021,26(9):30−41.

    ZHANG X Q,WANG Z F,CANMUYOU,et al. Analysis of yield and current comprehensive utilization of crop straws in China[J]. Journal of China Agricultural University,2021,26 (9):30−41.
    [2] 杨连玉,高阳. 玉米秸秆饲料化高效利用的瓶颈及解决策略[J]. 吉林农业大学学报,2016,38(5):634−638+644.

    YANG L Y,GAO Y. Bottlenecks of efficient utilization of corn straw feed and its solutions[J]. Journal of Jilin Agricultural University,2016,38 (5):634−638+644.
    [3] 蒋芳芳. 低质粗饲料在草食家畜饲养中的应用和处理[J]. 饲料博览,2020(1):90.

    JIANG F F. Application and treatment of low-quality roughage in feeding herbivorous livestock[J]. Feed Review,2020 (1):90.
    [4] 张雪松,朱建良. 秸杆的利用与深加工[J]. 化工时刊,2004,18(5):1−5.

    ZHANG X S,ZHU J L. The utility and further processing of straws[J]. Chemical Industry Times,2004,18 (5):1−5.
    [5] 许晓凯,石宁,郭玉琴,等. 提高玉米秸秆利用率的研究技术进展[J]. 农学学报,2018,8(3):58−63. doi: 10.11923/j.issn.2095-4050.cjas17030039

    XU X K,SHI N,GUO Y Q,et al. Research progress on improving utilization efficiency of corn stalk[J]. Journal of Agriculture,2018,8 (3):58−63. doi: 10.11923/j.issn.2095-4050.cjas17030039
    [6] 杨静,蒋剑春,张宁,等. 微生物降解木质素的研究进展[J]. 生物质化学工程,2021,55(3):62−70.

    YANG J,JIANG J C,ZHANG N,et al. Research progress of lignin degradation by microorganisms[J]. Biomass Chemical Engineering,2021,55 (3):62−70.
    [7] 闵晓梅,孟庆翔. 白腐真菌处理秸秆的研究[J]. 饲料研究,2000(9):7−9.

    MIN X M,MENG Q X. Study on treating stalk by phanerochacte chrysospovium[J]. Feed Research,2000 (9):7−9.
    [8] 赵红霞,杨建军,詹勇. 白腐真菌在秸秆作物资源开发中的研究[J]. 饲料工业,2002,23(11):40−42.

    ZHAO H X,YANG J J,ZHAN Y. Study on white rot fungi in the development of straw crop resources[J]. Feed Industry,2002,23 (11):40−42.
    [9] 郭旭生,崔慰贤,姚爱兴. 白腐真菌在降解秸秆木质素中的应用[J]. 饲料博览,2003(2):36−39.

    GUO X S,CUI W X,YAO A X. Application of white rot fungus in degrading stover lignin[J]. Feed Review,2003 (2):36−39.
    [10] 王雨琼,勾长龙,胡冰,等. 白腐真菌发酵对青稞秸秆营养价值的影响[J]. 饲料研究,2021,44(22):88−91.

    WANG Y Q,GOU C L,HU B,et al. Effect of white rot fungi fermentation on nutritional value of hullessbarley straw[J]. Feed Research,2021,44 (22):88−91.
    [11] 唐菊,段传人,黄友莹,等. 白腐菌木质素降解酶及其在木质素降解过程中的相互作用[J]. 生物技术通报,2011(10):32−36.

    TANG J,DUAN C R,HUANG Y Y,et al. Characteristics of ligninolytic enzymes of white-rot fungus and their interactions in the process of lignin degradation[J]. Biotechnology Bulletin,2011 (10):32−36.
    [12] 程银华,雷雪芹,徐廷生,等. 玉米秸秆揉丝微贮与传统青贮饲料发酵过程中pH和微生物的变化[J]. 西北农林科技大学学报(自然科学版),2014,42(5):17−21.

    CHENG Y H,LEI X Q,XU T S,et al. Changes of pH and microorganism during the fermentation of microbial and traditional silages with corn straw knead wire[J]. Journal of Northwest A & F University (Natural Science Edition),2014,42 (5):17−21.
    [13] XU W Y,FU S F,YANG Z M,et al. Improved methane production from corn straw by microaerobic pretreatment with a pure bacteria system[J]. Bioresource Technology,2018,259:18−23. doi: 10.1016/j.biortech.2018.02.046
    [14] 谢立华,淡育红,胡小加,等. 促进作物秸秆和菌核腐解的复合生物制剂应用效果[J]. 中国油料作物学报,2015,37(3):372−376.

    XIE L H,DAN Y H,HU X J,et al. Application effect of compound microbial agents promoting crop straw and sclerotia decomposition[J]. Chinese Journal of Oil Crop Sciences,2015,37 (3):372−376.
    [15] 孙文,许丽. 复合微生物菌剂处理玉米秸秆应用效果的研究[J]. 饲料博览,2010(7):1−4.

    SUN W,XU L. Study on application of compound microbial additives on the fermenting corn straw[J]. Feed Review,2010 (7):1−4.
    [16] 廖云琼,康永刚,朱广琴,等. 揉丝微贮对玉米秸秆品质及营养成分的影响[J]. 饲料研究,2021,44(5):92−94.

    LIAO Y Q,KANG Y G,ZHU G Q,et al. Effect of knead wire mcrobial silage on the quality and nutrient composition of corn straw[J]. Feed Research,2021,44 (5):92−94.
    [17] 陈勇强. 响应面法优化枯草芽孢杆菌发酵玉米秸秆产腐植酸条件[J]. 福建农业科技,2021,52(10):47−51.

    CHEN Y Q. Optimization of humic acid production from corn straw fermented by Bacillus subtilis based on response surface methodology[J]. Fujian Agricultural Science and Technology,2021,52 (10):47−51.
    [18] 丁志刚,郭亮,蒋建军,等. 地衣芽孢杆菌对小麦秸秆和稻草品质的影响[J]. 扬州大学学报(农业与生命科学版),2010,31(2):82−86.

    DING Z G,GUO L,JIANG J J,et al. Effect of inoculating Bacillus licheniformis on quality of wheat and rice straws[J]. Journal of Yangzhou University (Agricultural and Life Science Edition),2010,31 (2):82−86.
    [19] 易安妮,江珊珊,梁恩,等. 利用多菌种固态发酵降解玉米秸秆[J]. 吉林农业科学,2011,36(2):47−50.

    YI A N,JIANG S S,LIANG E,et al. Reduction of corn stalk with solid fermentation by multi-strains[J]. Journal of Jilin Agricultural Sciences,2011,36 (2):47−50.
    [20] Association of Official Analytical Chemists. Official methods of analysis (15th ed. )[M]. Arlington, VA: Author, 1990.
    [21] VAN SOEST P J,ROBERTSON J B,LEWIS B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J]. Journal of Dairy Science,1991,74 (10):3583−3597. doi: 10.3168/jds.S0022-0302(91)78551-2
    [22] GOERING H K, VAN SOEST P J. Forage fiber analysis [M]. United States Department of Agriculture, Government Printing Office: Washington, DC, USA, 1970.
    [23] WANG F,ZHANG D L,CHEN M,et al. Characteristics of corn stover components pyrolysis at low temperature based on detergent fibers[J]. Frontiers in Bioengineering and Biotechnology,2019,7:188. doi: 10.3389/fbioe.2019.00188
    [24] 内蒙古自治区质量技术监督局. 青贮饲料pH值、有机酸、氨态氮测定方法: DB15/T 1458—2018 [S/OL]. (2008-10-25)[2022-10-01].https://www.doc88.com/p-00899962614421.html.

    Autonomous Region Quality and Technical Supervision Bureau of Inner Mongolia. Determination of pH, organic acid and ammonium nitrogen in silage: DB15/T 1458—2018 [S/OL]. (2008-10-25)[2022-10-01].https://www.doc88.com/p-00899962614421.html.
    [25] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 饲料添加剂有机酸通用: GB/T 22142-2008 [S/OL]. (2008-10-01)[2022-10-01].https://www.doc88.com/p-5784428348787.html.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. Feed additives organic acids common: GB/T 22142-2018 [S/OL]. (2008-10-01)[2022-10-01].https://www.doc88.com/p-5784428348787.html.
    [26] ARRIOLA K G,VYAS D,KIM D,et al. Effect of Lactobacillus hilgardii, Lactobacillus buchneri, or their combination on the fermentation and nutritive value of sorghum silage and corn silage[J]. Journal of Dairy Science,2021,104 (9):9664−9675. doi: 10.3168/jds.2020-19512
    [27] 李浩波. 秸秆饲料学 [M]. 西安: 西安地图出版社, 2003.

    LI H B. Straw feed science [M]. Xi'an: Xi'an Cartographic Publishing House, 2003.
    [28] 韩友文. 饲料与饲养学 [M]. 北京: 中国农业出版社, 1997.

    HAN Y W. Feed and feeding science [M]. Beijing: China Agriculture Press, 1997.
    [29] 陈少先,刘悦,曾瑶英,等. 贝莱斯芽孢杆菌zk1对鹰嘴桃果肉组织的影响及酶学特性[J]. 食品与机械,2021,37(7):14−19. doi: 10.13652/j.issn.1003-5788.2021.07.003

    CHEN S X,LIU Y,ZENG Y Y,et al. Effects of Bacillus velezensis zk1 on fleshy tissue of olecranon peach and its enzymatic properties[J]. Food and Machinery,2021,37 (7):14−19. doi: 10.13652/j.issn.1003-5788.2021.07.003
    [30] 王毅,刘云国,习兴梅,等. 枯草芽胞杆菌降解木质纤维素能力及产酶研究[J]. 微生物学杂志,2008,28(4):1−6.

    WANG Y,LIU Y G,XI X M,et al. Lignocellulose degrading ability of Bacillus subtilis and its enzyme production[J]. Journal of Microbiology,2008,28 (4):1−6.
    [31] 周健. 不同种类秸秆的基础特性研究 [D]. 南京: 南京农业大学, 2017.

    ZHOU J. Study on basic characteristics of different kinds of straw [D]. Nanjing: Nanjing Agricultural University, 2017.
    [32] 杨冬静,谢逸萍,张成玲,等. 不同秸秆还田模式土壤微生物多样性分析[J]. 江西农业学报,2021,33(6):34−42.

    YANG D J,XIE Y P,ZHANG C L,et al. Analysis of soil microbial diversity under different straw returning patterns[J]. Acta Agriculturae Jiangxi,2021,33 (6):34−42.
    [33] 赵蕊蕊,郭晓军,郭威,等. 添加微生物菌剂对“张杂谷”全株青贮品质和有氧稳定性的影响[J]. 中国饲料,2019(5):24−28.

    ZHAO R R,GUO X J,GUO W,et al. The effect of microorganism inoculanton on the silage quality and aerobic stability of whole-crop Zhang hybrid millet[J]. China Feed,2019 (5):24−28.
    [34] 田祖光,孙悦龙,刘浩,等. 复合菌剂对干谷草发酵品质及营养价值的影响[J]. 中国饲料,2021(15):124−129.

    TIAN Z G,SUN Y L,LIU H,et al. Effect of compound bacteria on fermentation quality and nutritional value of dry millet grass[J]. China Feed,2021 (15):124−129.
    [35] XIA L M,MIAO Y Z,CAO A L,et al. Biosynthetic gene cluster profiling predicts the positive association between antagonism and phylogeny in Bacillus[J]. Nature Communications,2022,13 (1):1−11. doi: 10.1038/s41467-021-27699-2
    [36] 安徽省市场监督管理局. 玉米秸秆黄贮技术规程: DB34/T 3872—2021 [S/OL]. (2021-02-25)[2022-10-01].https://www.renrendoc.com/paper/227773893.html.

    Anhui Provincial Market Supervision Administration. Technical regulation for corn straw yellow silage: DB34/T 3872—2021 [S/OL]. (2021-02-25)[2022-10-01].https://www.renrendoc.com/paper/227773893.html.
    [37] 王红梅,屠焰,张乃锋,等. 饲用酶制剂在反刍动物营养中的应用进展[J]. 草业学报,2017,26(3):199−213.

    WANG H M,TU Y,ZHANG N F,et al. Application of exogenous enzymes in ruminant nutrition[J]. Acta Prataculturae Sinica,2017,26 (3):199−213.
    [38] 定雅斯. 青贮苜蓿蛋白降解抑制技术研究 [D]. 长沙: 湖南农业大学, 2015.

    DING Y S. Study on protein degradation inhibition technology of silage alfalfa [D]. Changsha: Hunan Agricultural University, 2015.
    [39] PAN Y X,ZHENG X T,XIANG Y. Structure-function elucidation of a microbial consortium in degrading rice straw and producing acetic and butyric acids via metagenome combining 16S rDNA sequencing[J]. Bioresource Technology,2021,340:125709. doi: 10.1016/j.biortech.2021.125709
    [40] PAHLOW G,MUCK R E,DRIEHUIS F,et al. Microbiology of ensiling[J]. Silage Science and Technology,2003,42:31−93.
    [41] 赵怀宝,任玉龙. 短链脂肪酸在动物体内的生理特点和功能[J]. 饲料研究,2016(3):29−32.

    ZHAO H B,REN Y L. Physiological characteristics and functions of short-chain fatty acids in animals[J]. Feed Research,2016 (3):29−32.
    [42] 刘强,黄应祥,王聪,等. 异丁酸对西门塔尔牛瘤胃发酵及尿嘌呤衍生物的影响[J]. 动物营养学报,2006,18(3):160−165.

    LIU Q,HUANG Y X,WANG C,et al. Effects of isobutyrate on rumen fermentation and purine derivatives of urine in Simmental steer[J]. Chinese Journal of Animal Nutrition,2006,18 (3):160−165.
    [43] 赵会利,高艳霞,李建国,等. 丁酸钠对断奶犊牛生长、血液生化指标及胃肠道发育的影响[J]. 畜牧兽医学报,2013,44(10):1600−1608.

    ZHAO H L,GAO Y X,LI J G,et al. Effect of sodium butyrate on growth, serum biochemical parameters and gastrointestinal development of weaning calves[J]. Acta Veterinaria et Zootechnica Sinica,2013,44 (10):1600−1608.
  • 加载中
表(5)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  39
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-20
  • 录用日期:  2023-04-05
  • 修回日期:  2023-02-26
  • 网络出版日期:  2023-06-05

目录

    /

    返回文章
    返回