留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微生物肥料及其对黑土旱田作物应用的效果

刘京京 陈学文 梁爱珍 于东 李会之 张延 黄丹丹 刘立名

刘京京,陈学文,梁爱珍,等. 微生物肥料及其对黑土旱田作物应用的效果[J]. 土壤与作物,2023,12(2):179 − 195 doi: 10.11689/sc.2022100201
引用本文: 刘京京,陈学文,梁爱珍,等. 微生物肥料及其对黑土旱田作物应用的效果[J]. 土壤与作物,2023,12(2):179 − 195 doi: 10.11689/sc.2022100201
LIU J J,CHEN X W,LIANG A Z,et al. Microbial fertilizer and its mechanism on the growth and development of dry farmland crops in black soil[J]. Soils and Crops,2023,12(2):179 − 195 doi: 10.11689/sc.2022100201
Citation: LIU J J,CHEN X W,LIANG A Z,et al. Microbial fertilizer and its mechanism on the growth and development of dry farmland crops in black soil[J]. Soils and Crops,2023,12(2):179 − 195 doi: 10.11689/sc.2022100201

微生物肥料及其对黑土旱田作物应用的效果

doi: 10.11689/sc.2022100201
基金项目: 中国科学院战略性先导科技专项(XDA28080201);吉林省科技发展计划“中青年科技创新领军人才及团队”项目(20200301022RQ);吉林省重大科技专项课题(20230302005NC)
详细信息
    作者简介:

    刘京京(1999−),女,硕士研究生,研究方向为资源利用与植物保护. E-mail: 18736868597@163.com

    通讯作者:

    陈学文(1982−),男,副研究员,研究方向为土壤物理与土壤耕作. E-mail: chenxuewen@iga.ac.cn

  • 中图分类号: S144

Microbial fertilizer and its mechanism on the growth and development of dry farmland crops in black soil

  • 摘要:

    微生物肥料因其具有促进养分转化、增强作物抗性、改善土壤结构、降低环境污染等特性,在推进减肥增效、养分资源高效利用与农业绿色发展进程中发挥着重要的作用。然而,有关微生物肥料的研究大多聚焦在经济作物上,粮食作物尤其旱田作物方面还很欠缺,且微生物肥料功效是否适用于所有作物尚不明确。而且,微生物肥料种类繁多、功能各异、效果多样形成的认知与使用方法误区阻碍了其更大范围的应用。探明微生物肥料对粮食作物生长发育影响作用机制有助于推进农业生产提质增效,对促进东北黑土地资源利用与保护具有重要的科学意义。本文通过梳理微生物肥料分类与功效,阐明了微生物肥料影响粮食作物生长发育的作用机制,在此基础上阐述了黑土旱田作物应用微生物肥料效果及其制约因素,提出了存在问题与研究展望,以期为微生物肥料在黑土旱田作物上的大面积推广应用提供科学依据。

     

  • 表  1  微生物肥料对土壤养分的改善效果

    Table  1.   Effects of microbial fertilizers on soil nutrients

    菌种
    Strain
    功能菌株
    Functional strain
    作用效果
    Effect
    文献
    Reference
    芽胞杆菌属
    Bacillus
    Bacillus sp. T1-8,
    Bacillus sp. T4-9
    产氨、产嗜铁素、解无机磷等,改善土壤理化性质。Produces ammonia, ferritin, inorganic phosphorus, etc., and improves soil physical and chemical properties.[45]
    链霉菌属
    Streptomyces

    放线菌JXJ-0136
    Actinomyces JXJ-0136
    增加土壤可溶性磷含量,提高作物对土壤磷的利用率。Increase soil soluble phosphorus content and improve the utilization of soil phosphorus by crops.[46]
    梭状芽孢杆菌属
    Clostridium sp.

    Clostridium sp. BZ-1提高土壤肥力,缓解铅、镉等重金属对农作物的胁迫作用。Improving soil fertility and alleviating the stressful effects of heavy metals such as lead and cadmium on crops.[47]
    草酸青霉、黑曲霉、
    巨大芽孢杆菌
    Penicillium oxalicum, Aspergillus niger H1, Bacillus megaterium
    P.oxalicum I1, A. niger H1,
    B. megaterium
    增加土壤有效磷含量。Increase the soil vailable phosphorus content.[48]
    芽孢杆菌属
    Bacillus
    枯草芽孢杆菌、胶冻样类
    芽孢杆菌 Bacillus subtilis,
    Paenibacillus mucilaginosus
    降解土壤中氮磷,提高土壤肥力。Degrades nitrogen and phosphorus in the soil and improves soil fertility.[32]
    乳杆菌属
    Lactobacillus
    乳酸菌复合制剂
    Lactobacillus combination products
    有效降低土壤pH,增加养分含量,培肥地力。Effectively reduces soil pH, increases nutrient content and fertilizes the ground.[49]
    芽孢杆菌属
    Bacillus
    解淀粉芽孢杆菌
    Bacillus amyloliquefaciens
    降低土壤pH,增加土壤有机质和速效养分含量。Reduced soil pH and increased soil organic matter and available nutrients content.[50]
    固氮菌属、固氮螺菌属、
    芽胞杆菌属、乳杆菌属
    Azotobacter, Azospirillum,
    Bacillus sp., Lactobacillus
    固氮螺菌、巴氏梭菌、棕色
    固氮菌和嗜酸乳杆菌
    Azospirillum brasilense, Clostridium pasteurianum, Azotobacter vinelandii, Lactobacillus acidophilus
    提高土壤有效磷和速效钾含量。Increase soil available phosphorus and potassium content.[51]
    芽孢杆菌属
    Bacillus
    巨大芽孢杆菌
    Bacillus megaterium
    活化土壤Cd和Zn含量,改善土壤质量。Revitalize soil Cd and Zn content and improve soil quality.[40]
    链霉菌属
    Streptomyces

    泾阳链霉菌
    Streptomyces jingyangensis
    固氮、解钾、解磷,提高土壤有机质含量,增加土壤肥力。Nitrogen fixation, potassium and phosphorus removal, improving soil organic matter content and increasing soil fertility.[5]
    下载: 导出CSV

    表  2  微生物肥料对作物抗逆性和抗病性的作用效果

    Table  2.   Effects of microbial fertilizers on crop stress resistance and disease resistance

    菌种
    Strain
    功能菌株
    Functional strain
    作用效果
    Effect
    文献
    Reference
    假单胞菌
    Pseudomonas

    Pseudomonas sp. BP16可抑制植物病原微生物。Suppress plant pathogenic microorganisms.
    [53]
    枯草芽孢杆菌
    Bacillus subtilis
    Bacillus subtilis Y-IVI减少根际土枯草芽孢杆菌。Reduction of Fusarium acuminatum population in rhizosphere soil and reduction of crop biotic barriers.
    [54]
    假单胞菌属
    Pseudomonas
    P. protegens KY4410辅助天然抗病、直接促生和缓解非生物胁迫,抑制小麦纹枯病。Aiding natural disease resistance, direct promotion and mitigation of abiotic stresses and suppression of wheat sharp eyespot.
    [55]
    根内球囊霉、荧光假单胞菌
    Glomus, Pseudomonas fluorescens
    G. intraradices,
    P. fluorescens strain 93
    提高玉米耐水分胁迫能力和水分利用率。Improved water stress tolerance and water utilization in maize.[56]
    假单胞菌
    Pseudomonas adaceae
    Pseudomonas MCC2693具有拮抗病原真微生物、耐寒性、耐盐性及生物防治能力。Antagonistic to pathogenic fungi, cold tolerance, salt tolerance and biological control ability.
    [57]
    淀粉芽孢杆菌
    Bacillus amyloliquefaciens
    Bacillus amyloliquefaciens FZB42提高幼苗的抗旱性和耐盐性。Improving drought resistance and salt tolerance of seedlings.[58]
    细黄链霉菌
    Streptomyces microflavus
    海洋放线菌MB-97
    Marine actinomycete MB-97
    减轻大豆连作障碍,防治大豆连作土传真菌性病害。Mitigation of soybean crop disorders and control of soil-borne fungal diseases of soybean crop succession.[59]
    解淀粉芽孢杆菌、地衣芽孢杆菌 Bacillus amyloliquefaciens, Bacillus licheniformisB. amyloliquefaciens EZ15-07,
    B. 1icheniformis EZ01-05
    防治玉米细菌性褐腐病效果显著。Control of bacterial brown rot of corn is effective.[60]
    类芽孢杆菌
    Paenibacillus
    Paenibacillus sp. GD812具有较高的固氮酶活性和拮抗病原真菌能力。High nitrogen fixing enzyme activity and antagonistic ability against pathogenic fungi.[61]
    荧光假单胞菌
    Pseudomonas fluorescens
    CGMCC No 3026抑制病原微生物的生长,降低病虫害发生。Inhibit the growth of pathogenic microorganisms and reduce the occurrence of pests and diseases.[62]
    PGPR制剂
    PGPR preparation
    根际促生菌
    Plant growth promoting rhizobacteria
    抑制多种植物病害特别是土传病害,诱发植株对病虫害的抗性。Suppresses a variety of plant diseases, especially soil-borne diseases, and induces plant resistance to pests and diseases.[63]
    内生放线菌
    Endophytic actinomycetes
    Streptomyces albidoflavus
    OsiLf-2
    诱导作物合成大量渗透调节物质,提高作物的抗耐受性与抗逆性。Induces the synthesis of large amounts of osmoregulatory substances in crops to improve tolerance and stress resistance.[64]
    下载: 导出CSV

    表  3  微生物肥料对作物生长及品质的改善效果

    Table  3.   Effects of microbial fertilizers on crop growth and quality

    菌种
    Strain
    功能菌株
    Functional strain
    作用效果
    Effect
    文献
    Reference
    假单胞菌 、巨大芽孢杆菌 、放线菌Pseudomonas adaceae, Bacillus megaterium, ActinomycetesPseudomonas,
    B. megaterium,
    A. tenuis
    产生吲哚乙酸、赤霉素和细胞分裂素,使玉米平均增产10.45%。Production of indoleacetic acid, gibberellin and cytokinin, increase corn yield by an average of 10.45%.[77]
    光合菌
    Photosynthetic bacteria
    BTN-1类球红细菌
    Rhodobacter sphaeroides
    BTN-1
    促进幼苗生长,提高叶绿素含量,增强光合作用。Promote seedling growth, increase chlorophyll content and enhance photosynthesis.[78]
    芽孢杆菌属
    Bacillus
    MZ4, KM2, KM1增加株高、地上生物量、叶面积指数和叶绿素,增产。Increased plant height, above-ground biomass, leaf area index and chlorophyll and yield.[79]
    草酸青霉、黑曲霉、巨大芽孢杆菌 Penicillium oxalicum, Aspergillus niger H1, Bacillus megateriumP. oxalicum I1,
    A. niger H1,
    B. megaterium
    显著提高玉米产量。
    Significant increased corn yield.
    [48]
    溶磷菌
    Phosphate-solubilizing microorganisms
    PSB, Rhizobium leguminosarum bv.phaseoli strains P31, Pseudomonas sp. strain 24显著提高玉米产量。显著增加植株磷浓度和地上部干物质量。Significant increased corn yield. Significantly increased plant phosphorus concentration and above-ground dry matter biomass.[8081]
    芽孢杆菌属
    Bacillus
    B. mucilaginosus,
    B. subtilis
    显著促进玉米地上部干重和根的伸长。Significant promoted dry weight and root elongation of corn.[82]
    荧光假单胞菌
    P. Fluorescens
    P. Fluorescens,
    E. Radicincitans
    增加干重、产量。Increase dry weight, yield.[83]
    阴沟肠杆菌
    Enterobacter cloacea
    Enterobacter cloacae显著促进种子萌发及幼苗生长。Significantly promoted seed germination and seedling growth.[84]
    根内球囊霉、荧光假单胞菌 Glomus, P. FluorescensG. intraradices,
    P. fluorescens strain 93
    促进玉米生长。Promotes corn growth.[56]
    假单胞菌
    Pseudomonas adaceae
    Pseudomonas MCC2693促进植物生长。Promotes crop growth.[57]
    复合菌群
    Compound bacteria
    光合菌、乳酸菌群、革兰氏阳性放线菌 Photosynthetic microbes, lactic acid microbes, Gram-positive actinomyces 促进生长,提高单株重和产量。Promotes crop growth and increase plant weight and yield.[85]
    复合菌群
    Compound bacteria
    EM菌剂 Effective microorganisms促进养分吸收、根系生长。Promote nutrient uptake and root growth of crop.[86]
    乳酸菌
    Lactic acid bacteria
    ——促进作物生长,提高品质。Promote crops growth and improve quality.[75]
    细黄链霉菌
    Streptomyces microflavus
    海洋放线菌MB-97 Marine actinomycete MB-97刺激大豆生长,增加大豆产量。Stimulates soybean growth and increases soybean yield.[59]
    下载: 导出CSV

    表  4  微生物肥料对土壤结构的改善效果

    Table  4.   Effects of microbial fertilizers on soil structure improvement

    菌种
    Strain
    功能菌株
    Functional strain
    作用效果
    Effect
    文献
    Reference
    枯草芽孢杆菌
    Bacillus subtilis
    Bacillus subtilis A-5提升有益菌相对丰度,改善土壤地力环境。Enhance the relative abundance of beneficial bacteria and improve the soil fertility environment.[32]
    假单胞菌
    Pseudomonadaceae
    AEBL3增加土壤微生物数量,提高土壤中呋喃丹的降解率。Increase the content of soil microorganisms and improve the degradation rate of furadan in soil.[91]
    固氮菌属、巨大芽孢杆菌、荧光假单胞菌 Azotobacter, Bacillus megaterium,
    P. Fluorescens
    A. Chroococcum,
    B. megaterium,
    P. florescence
    增加土壤微生物活性,提高养分吸收。Increase soil microbial activity and improve nutrient uptake.[92]
    乳杆菌属
    Lactobacillus
    乳酸菌复合制剂Multiple lactobacillus增加土壤生物量,改善土壤结构。Increase soil biomass content and improve soil structure.[49]
    芽孢杆菌属
    Bacillus
    解淀粉芽孢杆菌Bacillus amyloliquefaciens降低土壤容重,增加土壤通透性。Reduce soil capacity and increase soil permeability.[50]
    芽孢杆菌属
    Bacillus
    巨大芽孢杆菌 Bacillus megaterium活化土壤Cd和Zn含量,改善土壤孔隙度。Activate soil Cd and Zn content and improve soil porosity.[40]
    固氮菌、光合菌、根瘤菌 Azotobacter sp, Photosynthetic bacteria, Rhizobium——显著增加土壤微生物数量、土壤微生物量碳、氮和土壤养分含量,显著改善土壤团粒结构。Significantly increase soil microbial content, soil microbial carbon, nitrogen and soil nutrient content, and significantly improve soil aggregate structure.[10]
    恶臭假单胞菌
    Pseudomonas putida
    GAP-P45增加大团聚体比例,改善物理性质。Increase the proportion of large aggregates and improve physical properties.[93]
    下载: 导出CSV
  • [1] 中华人民共和国国家统计局. 国家数据 [EB/OL]. [2022-03-30]. http://www.stats.gov.cn/tjsj/.

    National Bureau of Statistics of the People's Republic of China. National statics [EB/OL]. [2022-03-30]. http://www.stats.gov.cn/tjsj/.
    [2] 李可可,陈腊,米国华,等. 微生物肥料在玉米上的应用研究进展[J]. 玉米科学,2021,29(3):111−122.

    LI K K,CHEN L,MI G H,et al. Research progress on the microbial fertilizer application in maize[J]. Journal of Maize Sciences,2021,29 (3):111−122.
    [3] GUO J H,LIU X J,ZHANG Y,et al. Significant acidification in major Chinese croplands[J]. Science,2010,327 (5968):1008−1010. doi: 10.1126/science.1182570
    [4] 蒋发辉,钱泳其,郭自春,等. 基于Meta分析评价东北黑土地保护性耕作与深耕的区域适宜性: 以作物产量为例[J]. 土壤学报,2022,59(4):935−952.

    JIANG F H,QIAN Y Q,GUO Z C,et al. Evaluation of regional suitability of conservation tillage and deep tillage in black land of northeast China based on meta-analysis: taking crop yield as an example[J]. Acta Pedologica Sinica,2022,59 (4):935−952.
    [5] 张雯,李成涛,王小宾. 泾阳链霉菌代谢产物生物活性研究[J]. 湖北农业科学,2012,51(19):4254−4256. doi: 10.3969/j.issn.0439-8114.2012.19.021

    ZHANG W,LI C T,WANG X B. Study on the bioactivity of Streptomyces jingyangensis metabolite[J]. Hubei Agricultural Sciences,2012,51 (19):4254−4256. doi: 10.3969/j.issn.0439-8114.2012.19.021
    [6] 孟建宇,高凤芝,佟昕,等. 以纤维素为载体的混合微生物菌肥对玉米的促生作用[J]. 中国饲料,2021(23):93−96.

    MENG J Y,GAO F Z,TONG X,et al. Effects of mixed microbial fertilizer with cellulose as carrier on growth promotion of maize[J]. China Feed,2021 (23):93−96.
    [7] 王书娟,齐合玉,孙超,等. 微生物菌肥对大棚番茄的影响[J]. 蔬菜,2020(1):34−37.

    WANG S J,QI H Y,SUN C,et al. Effect of microbial fertilizer on tomato in greenhouse[J]. Vegetables,2020 (1):34−37.
    [8] 刘鹏,刘训理. 中国微生物肥料的研究现状及前景展望[J]. 农学学报,2013,3(3):26−31. doi: 10.3969/j.issn.1007-7774.2013.03.007

    LIU P,LIU X L. Current research status and prospect of microbial fertilizer in China[J]. Journal of Agriculture,2013,3 (3):26−31. doi: 10.3969/j.issn.1007-7774.2013.03.007
    [9] 鲁凯珩,金杰人,肖明. 微生物肥料在盐碱土壤中的应用展望[J]. 微生物学通报,2019,46(7):1695−1705.

    LU K H,JIN J R,XIAO M. Prospect of microbial fertilizer in saline soil[J]. Microbiology China,2019,46 (7):1695−1705.
    [10] 毛骁,孙保平,张建锋,等. 微生物菌肥对干旱矿区土壤的改良效果[J]. 水土保持学报,2019,33(2):201−206.

    MAO X,SUN B P,ZHANG J F,et al. Effect of microbial fertilizer on soil amelioration in arid mining area[J]. Journal of Soil and Water Conservation,2019,33 (2):201−206.
    [11] 朱永官,彭静静,韦中,等. 土壤微生物组与土壤健康[J]. 中国科学:生命科学,2021,51(1):1−11.

    ZHU Y G,PENG J J,WEI Z,et al. Linking the soil microbiome to soil health[J]. Scientia Sinica (Vitae),2021,51 (1):1−11.
    [12] 周杨,邓名荣,杜娟,等. 我国农业微生物产业发展研究[J]. 中国工程科学,2022,24(5):197−206.

    ZHOU Y,DENG M R,DU J,et al. Study on the development of agricultural microbial industry in China[J]. Strategic Study of CAE,2022,24 (5):197−206.
    [13] 毛开云,陈大明,江洪波. 微生物肥料新品种研发及产业化发展态势分析[J]. 生物产业技术,2014(3):33−40.

    MAO K Y,CHEN D M,JIANG H B. Research and development of new varieties of microbial fertilizer and analysis of industrialization development trend[J]. Biotechnology and Business,2014 (3):33−40.
    [14] 范丙全. 我国生物肥料研究与应用进展[J]. 植物营养与肥料学报,2017,23(6):1602−1613. doi: 10.11674/zwyf.17335

    FAN B Q. Advances in biofertilizer research and development in China[J]. Journal of Plant Nutrition and Fertilizer,2017,23 (6):1602−1613. doi: 10.11674/zwyf.17335
    [15] 燕永亮,李力,李俊. 根际固氮微生物功能基因组及微生物肥料研究进展[J]. 中国农业科技导报,2011,13(5):93−101. doi: 10.3969/j.issn.1008-0864.2011.05.15

    YAN Y L,LI L,LI J. Research progress on functional genomics of nitrogen-fixing microorganisms and industrial development of bio-fertilizer[J]. Journal of Agricultural Science and Technology,2011,13 (5):93−101. doi: 10.3969/j.issn.1008-0864.2011.05.15
    [16] 中华人民共和国农业部. 微生物肥料术语: NY/T 1113—2006 [S/OL]. (2006-10-01)[2023-09-15]. http://www.docin.com/p-24545253html.

    Ministry of Agriculture of the People's Republic of China. Terms of microbial fertilizer: NY/T 1113—2006 [S]. [S/OL]. (2006-10-01)[2023-09-15]. http://www.docin.com/p-24545253html.
    [17] 元文霞,毕影东,樊超,等. 我国生物肥料的发展现状与应用[J]. 农业科技通讯,2022(12):4−9.

    YUAN W X,BI Y D,FAN C,et al. Development status and application of bio-fertilizer in China[J]. Bulletin of Agricultural Science and Technology,2022 (12):4−9.
    [18] 康丽敏. 浅谈生物肥料[J]. 现代农业,2011(1):50. doi: 10.3969/j.issn.1008-0708.2011.01.041

    KANG L M. Discussion on biological fertilizer[J]. Modern Agriculture,2011 (1):50. doi: 10.3969/j.issn.1008-0708.2011.01.041
    [19] 黄鸿翔,李书田,李向林,等. 我国有机肥的现状与发展前景分析[J]. 土壤肥料,2006(1):3−8.

    HUANG H X,LI S T,LI X L,et al. Analysis on the status of organic fertilizer and its development strategies in China[J]. Soil and Fertilizer Sciences in China,2006 (1):3−8.
    [20] 李涛,张朝辉,郭雅雯,等. 国内外微生物肥料研究进展及展望[J]. 江苏农业科学,2019,47(10):37−41. doi: 10.15889/j.issn.1002-1302.2019.10.008

    LI T,ZHANG Z H,GUO Y W,et al. Research progress and prospect of microbial fertilizer at home and abroad[J]. Jiangsu Agricultural Sciences,2019,47 (10):37−41. doi: 10.15889/j.issn.1002-1302.2019.10.008
    [21] CHANG H W. A study of the strains of Bacillus radicicola from the root nodules of soybean[R]. Imperial University, Tokyo, 1936.
    [22] 仝倩倩,祝英,崔得领,等. 我国微生物肥料发展现状及在蔬菜生产中的应用[J]. 中国土壤与肥料,2022(4):259−266. doi: 10.11838/sfsc.1673-6257.21014

    TONG Q Q,ZHU Y,CUI D L,et al. The development status of microbial fertilizer in China and its application in vegetable planting[J]. Soil and Fertilizer Sciences in China,2022 (4):259−266. doi: 10.11838/sfsc.1673-6257.21014
    [23] 陈文新, 汪恩涛. 中国根瘤菌 [M]. 北京: 科学出版社, 2011.

    CHEN W X, WANG E T. Rhizobia in China [M]. Beijing: Science Press, 2011.
    [24] 农业农村部微生物肥料和食用菌菌种质量监督检验测试中心. 登记产品[EB/OL]. [2022-03-30]. http://www.biofertilizer95.cn.

    Center for Quality Supervision and Test for Microbial Fertilizers and Mushroom Spawn, Ministry of Agriculture and Rural Affairs. Register products [EB/OL]. [2022-03-30]. http://www.biofertilizer95.cn.
    [25] 李 俊,姜昕,马鸣超. 新形势下微生物肥料产业运行状况及发展方向[J]. 植物营养与肥料学报,2020,26(12):2108−2114.

    LI J,JIANG X,MA M C. Situation and development direction for microbial fertilizer industry in the near future of China[J]. Journal of Plant Nutrition and Fertilizers,2020,26 (12):2108−2114.
    [26] 武兴友. 微生物菌肥对农业生产的影响及研究趋势分析[J]. 中国果菜,2018,38(4):9−11+15. doi: 10.19590/j.cnki.1008-1038.2018.04.003

    WU X Y. Analysis of the effect on microbial fertilizer on agricultural production and research trends[J]. China Fruit and Vegetable,2018,38 (4):9−11+15. doi: 10.19590/j.cnki.1008-1038.2018.04.003
    [27] 本报讯. 中国微生物肥料市场容量达1400万吨[J]. 中国农资,2015(36):1.

    BEN B X. The market capacity of microbial fertilizer in China is 14 million tons[J]. China Agri-Production News,2015 (36):1.
    [28] 李俊,姜昕,马鸣超,等. 我国微生物肥料产业需求与技术创新[J]. 中国土壤与肥料,2019(2):1−5. doi: 10.11838/sfsc.1673-6257.19029

    LI J,JIANG X,MA M C,et al. Development demand and technical innovation for bio-fertilizer industry in China[J]. Soil and Fertilizer Sciences in China,2019 (2):1−5. doi: 10.11838/sfsc.1673-6257.19029
    [29] 何永梅,陈胜文,孔志强,等. 生物菌肥的种类及功效[J]. 新农村,2020(10):27−28. doi: 10.3969/j.issn.1674-8409.2020.10.013

    HE Y M,CHEN S W,KONG Z Q,et al. Types and efficacy of biological bacterial fertilizer[J]. New Countryside,2020 (10):27−28. doi: 10.3969/j.issn.1674-8409.2020.10.013
    [30] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 农用微生物菌剂: GB 20287—2006 [S]. 北京: 中国标准出版社, 2006.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Microbial inoculants in agriculture: GB 20287—2006 [S]. Beijing: Standards Press of China, 2006.
    [31] 中华人民共和国农业部. 生物有机肥: NY 884—2012 [S]. 北京: 中国农业出版社, 2012.

    Ministry of Agriculture of the People's Republic of China. Microbial organic fertilizers: NY 884—2012 [S]. Beijing: China Agriculture Press, 2012.
    [32] 何宇. γ-聚谷氨酸高产菌的筛选及其对小白菜土壤微生态的影响研究 [D]. 上海: 上海海洋大学, 2022.

    HE Y. Screening of γ-polyglutamic acid-producing bacteria and its effect on soil microecology of Chinese cabbage [D]. Shanghai: Shanghai Ocean University, 2022.
    [33] 许景钢,孙涛,李嵩. 我国微生物肥料的研发及其在农业生产中的应用[J]. 作物杂志,2016(1):1−6. doi: 10.16035/j.issn.1001-7283.2016.01.001

    XU J G,SUN T,LI S. Application of microbial fertilizers in agricultural production of China[J]. Crops,2016 (1):1−6. doi: 10.16035/j.issn.1001-7283.2016.01.001
    [34] 李明. 微生物肥料研究[J]. 生物学通报,2001,36(7):5−7. doi: 10.3969/j.issn.0006-3193.2001.07.003

    LI M. Study on microbial fertilizer[J]. Bulletin of Biology,2001,36 (7):5−7. doi: 10.3969/j.issn.0006-3193.2001.07.003
    [35] 马志明,武良,高璐阳. 微生物次级代谢产物及其在肥料中的应用[J]. 肥料与健康,2022,49(3):1−6. doi: 10.3969/j.issn.2096-7047.2022.03.001

    MA Z M,WU L,GAO L Y. Microbial secondary metabolites and their application in fertilizers[J]. Fertilizer and Health,2022,49 (3):1−6. doi: 10.3969/j.issn.2096-7047.2022.03.001
    [36] 樊庆笙. 我国土壤中固氮细菌的研究及其展望[J]. 土壤学报,1963(2):112−120.

    FAN Q S. Research and prospect of nitrogen-fixing bacteria in soil in China[J]. Acta Pedologica Sinica,1963 (2):112−120.
    [37] 武杼华. 不同菌肥对温室连作土壤的短期改良效果研究 [D]. 杨凌: 西北农林科技大学, 2021.

    WU Z H. Study on short-term improvement effect of different bacterial fertilizers on continuous cropping soil in greenhouse [D]. Yangling: Northwest A & F University, 2021.
    [38] 孔凡真. 国内外微生物肥料的发展概况[J]. 吉林农业,2006(11):24−25. doi: 10.3969/j.issn.1674-0432.2006.11.027

    KONG F Z. General situation of microbial fertilizer development at home and abroad[J]. Agriculture of Jilin,2006 (11):24−25. doi: 10.3969/j.issn.1674-0432.2006.11.027
    [39] 谢明杰,程爱华,曹文伟. 我国微生物肥料的研究进展及发展趋势[J]. 微生物学杂志,2000,20(4):42−45.

    XIE M J,CHENG A H,CAO W W. Advanced and development tendency of microbial fertilizer in China[J]. Journal of Microbiology,2000,20 (4):42−45.
    [40] 王萍,李一曼,王雪佳,等. 巨大芽孢杆菌对土壤理化性质及植物富集镉锌的影响[J]. 环境科学,2022,43(12):5798−5807. doi: 10.13227/j.hjkx.202201297

    WANG P,LI Y M,WANG X J,et al. Effects of Bacillus megaterium on soil physical and chemical properties and plant enrichment of cadmium and zinc[J]. Environmental Science,2022,43 (12):5798−5807. doi: 10.13227/j.hjkx.202201297
    [41] 纪宏伟,王小敏,赵英男,等. 巨大/胶冻样类芽孢杆菌对印度芥菜修复Cd污染土壤的影响[J]. 水土保持学报,2015,29(2):215−219. doi: 10.13870/j.cnki.stbcxb.2015.02.040

    JI H W,WANG X M,ZHAO Y N,et al. Effects of Bacillus megaterium/Paenibacillus kribbensis on phytoextraction of Cd from contaminated soil by Brassica juncea[J]. Journal of Soil and Water Conservation,2015,29 (2):215−219. doi: 10.13870/j.cnki.stbcxb.2015.02.040
    [42] 王潇敏,李恋卿,潘根兴,等. 胶冻样芽孢杆菌与生物质炭复配及对番茄产量和品质的影响[J]. 土壤,2016,48(3):479−485. doi: 10.13758/j.cnki.tr.2016.03.010

    WANG X M,LI L Q,PAN G X,et al. Compound of Bacillus mucilaginosus and biochar and its effects on tomato yield and quality[J]. Soils,2016,48 (3):479−485. doi: 10.13758/j.cnki.tr.2016.03.010
    [43] BASAK B B,BISWAS D R. Co-inoculation of potassium solubilizing and nitrogen fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop[J]. Biology and Fertility of Soils,2010,46 (6):641−648. doi: 10.1007/s00374-010-0456-x
    [44] 尹瑞龄,许月蓉,顾希贤. 解磷接种物对垃圾堆肥中难溶性磷酸盐的转化及在农业上的应用[J]. 应用与环境生物学报,1995,1(4):371−378.

    YIN R L,XU Y R,GU X X. Effect of phosphate-dissolving inoculant(pdi) on transformation of insoluble phosphate in refuse compost and its application in agriculture[J]. Chinese Journal of Applied and Enviconmental Biology,1995,1 (4):371−378.
    [45] 陈小娟,刘铠鸣,宣明刚,等. 增强作物耐盐胁迫能力的根际促生菌筛选、鉴定及田间应用效果[J]. 南京农业大学学报,2020,43(3):452−459. doi: 10.7685/jnau.201905003

    CHEN X J,LIU K M,XUAN M G,et al. Screening and identification of plant growth-promoting rhizobacteria to enhance salt stress tolerance of crops and their effects in field experiment[J]. Journal of Nanjing Agricultural University,2020,43 (3):452−459. doi: 10.7685/jnau.201905003
    [46] 张炳火,李汉全,罗娟艳,等. 放线菌JXJ-0136对白菜和豇豆生长的影响及其解磷作用[J]. 中国农业科学,2016,49(16):3152−3161. doi: 10.3864/j.issn.0578-1752.2016.16.009

    ZHANG B H,LI H Q,LUO J Y,et al. Influences of actinomycete strain JXJ-0136 on the growth of Brassica chinensis and Vigna unguiculata and its phosphate solubilization[J]. Scientia Agricultura Sinica,2016,49 (16):3152−3161. doi: 10.3864/j.issn.0578-1752.2016.16.009
    [47] 吴志宇,周革非,陈慧敏,等. 一株稻田土壤梭状芽孢杆菌的分离及其固氮产氢能力研究[J]. 环境科学研究,2022,35(11):2588−2595. doi: 10.13198/j.issn.1001-6929.2022.06.18

    WU Z Y,ZHOU G F,CHEN H M,et al. Isolation of a Clostridium sp. from paddy soil and its ability of nitrogen fixation and hydrogen production[J]. Research of Environmental Sciences,2022,35 (11):2588−2595. doi: 10.13198/j.issn.1001-6929.2022.06.18
    [48] 千淋兆,龚明波,顾金刚,等. 溶磷微生物菌剂对土壤营养元素及玉米生长的影响[J]. 农业资源与环境学报,2014,31(5):425−431. doi: 10.13254/j.jare.2014.0158

    QIAN L Z,GONG M B,GU J G,et al. Effects of phosphate-solubilizing microbial inoculums on soil nutrients and corn growth[J]. Journal of Agricultural Resources and Environment,2014,31 (5):425−431. doi: 10.13254/j.jare.2014.0158
    [49] 黄璐璐,王站付,邱韩英,等. 施用稻秸沼渣肥料对西蓝花产量及土壤环境的影响[J]. 北方园艺,2022(20):76−83.

    HUANG L L,WANG Z F,QIU H Y,et al. Effects of applying rice straw biogas residue fertilizer on broccoli yield and soil environment[J]. Northern Horticulture,2022 (20):76−83.
    [50] 顾欣,孙权,王锐,等. 菌肥与有机肥配施对拱棚西瓜土壤的改良效果[J]. 干旱地区农业研究,2017,35(3):219−225. doi: 10.7606/j.issn.1000-7601.2017.03.34

    GU X,SUN Q,WANG R,et al. Microbial fertilizer and organic fertilizer on soil improvement effect of plastic shed watermelon[J]. Agricultural Research in the Arid Areas,2017,35 (3):219−225. doi: 10.7606/j.issn.1000-7601.2017.03.34
    [51] 张雅楠,张昀,燕香梅,等. 氮肥减施配施菌剂对水稻生长及土壤有效养分的影响[J]. 土壤通报,2019,50(3):655−661. doi: 10.19336/j.cnki.trtb.2019.03.21

    ZHANG Y N,ZHANG Y,YAN X M,et al. Effects of reducing nitrogen fertilizer combined with microbial agent application on rice growth and soil available nutrients[J]. Chinese Journal of Soil Science,2019,50 (3):655−661. doi: 10.19336/j.cnki.trtb.2019.03.21
    [52] 张卫信,申智锋,邵元虎,等. 土壤生物与可持续农业研究进展[J]. 生态学报,2020,40(10):3183−3206.

    ZHANG W X,SHEN Z F,SHAO Y H,et al. Soil biota and sustainable agriculture: a review[J]. Acta Ecologica Sinica,2020,40 (10):3183−3206.
    [53] 杨杉杉,李国光,张胜男,等. 假单胞菌BP16的分离鉴定及其植物促生性状和效应[J]. 微生物学通报,2018,45(10):2121−2130. doi: 10.13344/j.microbiol.china.180115

    YANG S S,LI G G,ZHANG S N,et al. Isolation and identification of Pseudomonas sp. BP16 and its plant growth-promoting traits and effects[J]. Microbiology China,2018,45 (10):2121−2130. doi: 10.13344/j.microbiol.china.180115
    [54] 赵青云,赵秋芳,王辉,等. 根际促生菌Bacillus subtilisY-IVI在香草兰上的应用效果研究[J]. 植物营养与肥料学报,2015,21(2):535−540.

    ZHAO Q Y,ZHAO Q F,WANG H,et al. Beneficial effects of plant growth promoter rhizobacteria on Vanilla (Vanilla planifolia Ames. ) growth[J]. Journal of Plant Nutrition and Fertilizer,2015,21 (2):535−540.
    [55] 王雪飞. 从逆境土壤发现高效抗病促生抗逆的小麦根际细菌 [D]. 武汉: 华中农业大学, 2013.

    WANG X F. Discovery of wheat rhizosphere bacteria with high efficiency, disease resistance, growth promotion and stress resistance from adverse soil [D]. Wuhan: Huazhong Agricultural University, 2013.
    [56] EHTESHAMI S M R,AGHAALIKHANI M,KHAVAZI K,et al. Effect of phosphate solubilizing microorganisms on quantitative and qualitative characteristics of maize (Zea mays L. ) under water deficit stress[J]. Pakistan Journal of Biological Sciences: PJBS,2007,10 (20):3585−3591. doi: 10.3923/pjbs.2007.3585.3591
    [57] JAIN R,PANDEY A. A phenazine-1-carboxylic acid producing polyextremophilic Pseudomonas chlororaphis (MCC2693) strain, isolated from mountain ecosystem, possesses biocontrol and plant growth promotion abilities[J]. Microbiological Research,2016,190:63−71. doi: 10.1016/j.micres.2016.04.017
    [58] 杨倩,柴文娟,张春林,等. 一种微生物菌肥对甜高粱种子萌发、幼苗生长和抗逆能力的影响[J]. 内蒙古农业大学学报(自然科学版),2013,34(6):102−109. doi: 10.16853/j.cnki.1009-3575.2013.06.021

    YANG Q,CHAI W J,ZHANG C L,et al. Dffects of a microbial fertilizer on Sorghum bicolor L. seeds germination. seeding growth and stress tolerance[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition),2013,34 (6):102−109. doi: 10.16853/j.cnki.1009-3575.2013.06.021
    [59] 胡江春,薛德林,王书锦,等. 大豆连作障碍研究Ⅲ. 海洋放线菌MB-97促进连作大豆增产机理[J]. 应用生态学报,2002,13(9):1095−1098.

    HU J C,XUE D L,WANG S J,et al. Obstacles of soybean continuous cropping Ⅲ. Mechanism of soybean yield increment by marine actinomyces MB-97[J]. Chinese Journal of Applied Ecology,2002,13 (9):1095−1098.
    [60] 朱碧春,顾丽,李正,等. 南极土壤芽孢杆菌的分离鉴定及其防治玉米细菌性褐腐病的研究[J]. 南京农业大学学报,2017,40(4):641−648.

    ZHU B C,GU L,LI Z,et al. Isolation and identification of the Antarctic soil Bacillus and its biocontrol effect against brown stalk rot on maize[J]. Journal of Nanjing Agricultural University,2017,40 (4):641−648.
    [61] 陈倩,高淼,胡海燕,等. 一株拮抗病原真菌的固氮菌Paenibacillus sp. GD812[J]. 中国农业科学,2011,44(16):3343−3350. doi: 10.3864/j.issn.0578-1752.2011.16.006

    CHEN Q,GAO M,HU H Y,et al. A nitrogen-fixing bacterium Paenibacillus sp. GD812 antagonistic against plant pathogenic fungi[J]. Scientia Agricultura Sinica,2011,44 (16):3343−3350. doi: 10.3864/j.issn.0578-1752.2011.16.006
    [62] 潘凡,安哲,周国娜,等. 荧光假单胞菌剂对青贮玉米病虫害及产量的影响[J]. 黑龙江畜牧兽医,2021(14):98−101+106. doi: 10.13881/j.cnki.hljxmsy.2020.11.0069

    PAN F,AN Z,ZHOU G N,et al. Effects of Pseudomonas fluorescens agent on disease, insect pests and yield of silage maize[J]. Heilongjiang Animal Science and Veterinary Medicine,2021 (14):98−101+106. doi: 10.13881/j.cnki.hljxmsy.2020.11.0069
    [63] 戴梅,宫象辉,丛蕾,等. PGPR制剂研发现状与发展趋势[J]. 山东科学,2006,19(6):45−48. doi: 10.3969/j.issn.1002-4026.2006.06.010

    DAI M,GONG X H,CONG L,et al. Recent advances and research trend of PGPR agents[J]. Shandong Science,2006,19 (6):45−48. doi: 10.3969/j.issn.1002-4026.2006.06.010
    [64] NIU S Q,GAO Y,ZI H X,et al. The osmolyte-producing endophyte Streptomyces albidoflavus OsiLf-2 induces drought and salt tolerance in rice via a multi-level mechanism[J]. The Crop Journal,2022,10 (2):375−386. doi: 10.1016/j.cj.2021.06.008
    [65] 张幸果,王允,和小燕,等. 施复合微生物肥和抗重茬肥对不同花生品种(系)光合特性、酶活性及产量的影响[J]. 河南农业大学学报,2016,50(6):726−733. doi: 10.16445/j.cnki.1000-2340.2016.06.004

    ZHANG X G,WANG Y,HE X Y,et al. Effect of fertilization treatments on the photosynthesis, enzyme activity and yield in peanut[J]. Journal of Henan Agricultural University,2016,50 (6):726−733. doi: 10.16445/j.cnki.1000-2340.2016.06.004
    [66] 谢宗鹏. 复合微生物菌肥的作用及其功效[J]. 农业科技与信息,2015(18):75−76. doi: 10.3969/j.issn.1003-6997.2015.18.034

    XIE Z P. Function and efficacy of compound microbial bacterial fertilizer[J]. Agricultural Science-Technology and Information,2015 (18):75−76. doi: 10.3969/j.issn.1003-6997.2015.18.034
    [67] 何永梅,孔志强,陈胜文,等. 生物菌肥及其在蔬菜生产上的应用[J]. 科学种养,2019(9):33−35.

    HE Y M,KONG Z Q,CHEN S W,et al. Biological bacterial fertilizer and its application in vegetable production[J]. Scientific Frming,2019 (9):33−35.
    [68] 李宇. 连作障碍土壤修复菌肥的制备与效果研究 [D]. 西安: 西安建筑科技大学, 2021.

    LI Y. Study on preparation and effect of bacterial fertilizer for remediation of continuous cropping obstacle soil [D]. Xi'an: Xi'an University of Architecture and Technology, 2021.
    [69] SZILAGYI-ZECCHIN V J, MÓGORÁF, FIGUEIREDO G G O. Strategies for characterization of agriculturally important bacteria[M]. India: Springer, 2016: 1−21.
    [70] 袁雅文. 有益微生物作用机理及微生物菌肥的应用前景[J]. 杂交水稻,2022,37(4):7−14. doi: 10.16267/j.cnki.1005-3956.20220227.109

    YUAN Y W. Mechanism of beneficial microorganisms and application prospect of microbial bacterial fertilizer[J]. Hybrid Rice,2022,37 (4):7−14. doi: 10.16267/j.cnki.1005-3956.20220227.109
    [71] STEENHOUDT O,VANDERLEYDEN J. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects[J]. FEMS Microbiology Reviews,2000,24 (4):487−506. doi: 10.1111/j.1574-6976.2000.tb00552.x
    [72] 占新华,蒋延惠,徐阳春,等. 微生物制剂促进植物生长机理的研究进展[J]. 植物营养与肥料学报,1999,5(2):97−105. doi: 10.11674/zwyf.1999.0201

    ZHAN X H,JIANG Y H,XU Y C,et al. Advances in researches on mechanism of microbialinoculants on promoting plant growth[J]. Plant Natrition and Fertilizen Science,1999,5 (2):97−105. doi: 10.11674/zwyf.1999.0201
    [73] 张志鹏,蔡燕飞,段继贤,等. 复合微生物菌剂在设施黄瓜上的应用效果研究[J]. 安徽农业科学,2020,48(2):168−170. doi: 10.3969/j.issn.0517-6611.2020.02.048

    ZHANG Z P,CAI Y F,DUAN J X,et al. Study on the fertilizer efficiency of compound microbial agent in cucumber cultivated in greenhouse[J]. Journal of Anhui Agricultural Sciences,2020,48 (2):168−170. doi: 10.3969/j.issn.0517-6611.2020.02.048
    [74] 卢玉杰. 生物菌肥种类及作用[J]. 河南农业,2015(23):14. doi: 10.15904/j.cnki.hnny.2015.23.060

    LU Y J. Types and functions of biological bacterial fertilizers[J]. Agriculture of Henan,2015 (23):14. doi: 10.15904/j.cnki.hnny.2015.23.060
    [75] 周游,赵金山,李海梅,等. 乳酸菌对茶树生长和品质性状的影响[J]. 江西农业学报,2017,29(10):31−34. doi: 10.19386/j.cnki.jxnyxb.2017.10.07

    ZHOU Y,ZHAO J S,LI H M,et al. Effects of lactic acid bacteria on growth and quality characters of tea (Camellia sinensis)[J]. Acta Agriculturae Jiangxi,2017,29 (10):31−34. doi: 10.19386/j.cnki.jxnyxb.2017.10.07
    [76] 谢达平,雷𫰪,彭道林,等. 微生物菌肥的作用机理研究[J]. 常德师范学院学报(自然科学版),2002,14(1):48−50+67.

    XIE D P,LEI X,PENG D L,et al. The study of the bacteria manure's role to the crop[J]. Journal of Changde Teachers University,2002,14 (1):48−50+67.
    [77] 孙淑荣,吴海燕,刘春光,等. PGPR复合制剂对玉米增产效果的研究[J]. 吉林农业科学,2004,29(5):22−28. doi: 10.3969/j.issn.1003-8701.2004.05.007

    SUN S R,WU H Y,LIU C G,et al. Study on the effect of PGPR compound preparation on maize yield increase[J]. Journal of Northeast Agricultural Sciences,2004,29 (5):22−28. doi: 10.3969/j.issn.1003-8701.2004.05.007
    [78] 陈丽洁,苏品,张卓,等. 一株耐盐类球红细菌的分离鉴定及其对不同作物的促生作用[J]. 南方农业学报,2019,50(5):964−973. doi: 10.3969/j.issn.2095-1191.2019.05.07

    CHEN L J,SU P,ZHANG Z,et al. Isolation and identification of one salt-tolerant strain of Rhodobacter sphaeorides and its growth promoting effect on different crops[J]. Journal of Southern Agriculture,2019,50 (5):964−973. doi: 10.3969/j.issn.2095-1191.2019.05.07
    [79] 陈腊,米国华,李可可,等. 多功能植物根际促生菌对东北黑土区玉米的促生效果[J]. 应用生态学报,2020,31(8):2759−2766. doi: 10.13287/j.1001-9332.202008.036

    CHEN L,MI G H,LI K K,et al. Effects of multifunctional plant rhizosphere promoting bacteria on maize growth in black soil areas in Northeast China[J]. Chinese Journal of Applied Ecology,2020,31 (8):2759−2766. doi: 10.13287/j.1001-9332.202008.036
    [80] AMANULLAH,KHAN A. Phosphorus and compost management influence maize (Zea mays) productivity under semiarid condition with and without phosphate solubilizing bacteria[J]. Frontiers in Plant Science,2015,6:1083.
    [81] CHABOT R,ANTOUN H,CESCAS M P. Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. phaseoli[J]. Plant and Soil,1996,184 (2):311−321. doi: 10.1007/BF00010460
    [82] ABOU-EL-SEOUD I I,ABDEL-MEGEED A. Impact of rock materials and biofertilizations on P and K availability for maize (Zea Maize) under calcareous soil conditions[J]. Saudi Journal of Biological Sciences,2012,19 (1):55−63. doi: 10.1016/j.sjbs.2011.09.001
    [83] KREY T,VASSILEV N,BAUM C,et al. Effects of long-term phosphorus application and plant-growth promoting rhizobacteria on maize phosphorus nutrition under field conditions[J]. European Journal of Soil Biology,2013,55:124−130. doi: 10.1016/j.ejsobi.2012.12.007
    [84] 吕朝阳,王威,杨淼泠,等. 根际促生菌S1菌株的分离鉴定及促生效果[J]. 安徽农业科学,2022,50(20):81−85+107.

    LYU C Y,WANG W,YANG M L,et al. Isolation and identification of rhizosphere growth-promoting strain S1 and its growth-promoting effect[J]. Journal of Anhui Agricultural Sciences,2022,50 (20):81−85+107.
    [85] 王东升,王蓓,李伟明,等. 氨基酸水溶肥料和EM微生物菌剂对设施白菜生长和品质的影响[J]. 土壤通报,2020,51(3):661−667. doi: 10.19336/j.cnki.trtb.2020.03.22

    WANG D S,WANG B,LI W M,et al. Effects of water soluble fertilizer containing amino acids and EM microbiological agents on growth and quality of Chinese cabbage in the greenhouse[J]. Chinese Journal of Soil Science,2020,51 (3):661−667. doi: 10.19336/j.cnki.trtb.2020.03.22
    [86] 葛君,孟自力,张志标,等. 肥料配施对小麦根系、根际土壤微生物及秸秆养分积累的影响[J]. 江苏农业科学,2022,50(11):214−219.

    GE J,MENG Z L,ZHANG Z B,et al. Effects of combined fertilization on the nutrient accumulation of wheat root system, rhizosphere soil microorganism and straw[J]. Jiangsu Agricultural Sciences,2022,50 (11):214−219.
    [87] 李钦,王引权,彭桐,等. 微生物菌肥的研究进展及其在中药材生产中的应用[J]. 农业与技术,2020,40(19):1−4. doi: 10.19754/j.nyyjs.20201015001

    LI Q,WANG Y Q,PENG T,et al. Research progress of microbial bacterial fertilizer and its application in Chinese herbal medicine production[J]. Agriculture and Technology,2020,40 (19):1−4. doi: 10.19754/j.nyyjs.20201015001
    [88] 刘哲. 不同施肥处理对土壤结构稳定性的影响[J]. 现代农业科技,2018(2):193−194. doi: 10.3969/j.issn.1007-5739.2018.02.109

    LIU Z. Effects of different fertilization treatments on stability of soil structure[J]. Modern Agricultural Science and Technology,2018 (2):193−194. doi: 10.3969/j.issn.1007-5739.2018.02.109
    [89] 何翠翠. 麦玉轮作有机无机肥料配施的土壤团聚体及微生物群落特征 [D]. 北京: 中国农业科学院, 2017.

    HE C C. Characteristics of soil aggregates and microbial community in wheat-jade rotation with organic and inorganic fertilizers [D]. Beijing: Chinese Academy of Agricultural Sciences, 2017.
    [90] 鲁洪娟,周德林,叶文玲,等. 生物有机肥在土壤改良和重金属污染修复中的研究进展[J]. 环境污染与防治,2019,41(11):1378−1383.

    LU H J,ZHOU D L,YE W L,et al. Advances in application of bio-organic fertilizer in soil improvement and remediation of heavy metals pollution[J]. Environmental Pollution & Control,2019,41 (11):1378−1383.
    [91] 齐建超,张承东,乔俊,等. 微生物与有机肥混合剂修复石油污染土壤的研究[J]. 农业环境科学学报,2010,29(1):66−72.

    QI J C,ZHANG C D,QIAO J,et al. Bioremediation of petroleum-contaminated soil by mixed microbes and organic fertilizer[J]. Journal of Agro-Environment Science,2010,29 (1):66−72.
    [92] UMESHA S,SRIKANTAIAH M,VISHWAJITH K,et al. Microbial population and nutrient uptake of maize as influenced by biofertilizers and different sources of organics under field conditions[J]. Environment and Ecology,2015,33:448−452.
    [93] SANDHYA V,ALI S Z. The production of exopolysaccharide by Pseudomonas putida GAP-P45 under various abiotic stress conditions and its role in soil aggregation[J]. Microbiology,2015,84 (4):512−519. doi: 10.1134/S0026261715040153
    [94] 张博琦,金锡九. 微生物菌肥对饲料玉米生长及营养成分的影响[J]. 饲料研究,2020,43(11):88−91.

    ZHANG B Q,JIN X J. Effect of microbial fertilizer on growth and nutritional composition of feed corn[J]. Feed Research,2020,43 (11):88−91.
    [95] 孙海燕,孙义卓,周娈,等. 化肥减量配施腐植酸生物肥对土壤生物学性质和玉米干物质量的影响[J]. 应用生态学报,2022,33(3):677−684. doi: 10.13287/j.1001-9332.202203.014

    SUN H Y,SUN Y Z,ZHOU L,et al. Effects of chemical fertilizer reduction combined with humic acid bio-fertilizer on soil biological properties and dry matter mass of maize[J]. Chinese Journal of Applied Ecology,2022,33 (3):677−684. doi: 10.13287/j.1001-9332.202203.014
    [96] 陈龙,孙广正,姚拓,等. 干旱区微生物肥料替代部分化肥对玉米生长及土壤微生物的影响[J]. 干旱区资源与环境,2016,30(7):108−113. doi: 10.13448/j.cnki.jalre.2016.224

    CHEN L,SUN G Z,YAO T,et al. Effect of chemical fertilizer partly replaced by microbial fertilizer on maize growth and soil microorganism in arid area[J]. Journal of Arid Land Resources and Environment,2016,30 (7):108−113. doi: 10.13448/j.cnki.jalre.2016.224
    [97] 荣良燕,姚拓,黄高宝,等. 植物根际优良促生菌(PGPR)筛选及其接种剂部分替代化肥对玉米生长影响研究[J]. 干旱地区农业研究,2013,31(2):59−65. doi: 10.3969/j.issn.1000-7601.2013.02.012

    RONG L Y,YAO T,HUANG G B,et al. Screening of plant growth promoting rhizobacteria strains and effects of inoculant on growth of maize by replacing part of chemical fertilizers[J]. Agricultural Research in the Arid Areas,2013,31 (2):59−65. doi: 10.3969/j.issn.1000-7601.2013.02.012
    [98] 杨清夏,李欢,龙光强,等. 基于有机肥和菌肥的玉米减肥增效研究[J]. 生态科学,2022,41(4):196−203. doi: 10.14108/j.cnki.1008-8873.2022.04.023

    YANG Q X,LI H,LONG G Q,et al. Study on reducing fertilizer and increasing use efficiency of maize based on organic fertilizer and bacterial fertilizer[J]. Ecological Science,2022,41 (4):196−203. doi: 10.14108/j.cnki.1008-8873.2022.04.023
    [99] 李涛,陈保冬. 丛枝菌根真菌通过上调根系及自身水孔蛋白基因表达提高玉米抗旱性[J]. 植物生态学报,2012,36(9):973−981.

    LI T,CHEN B D. Arbuscular mycorrhizal fungi improving drought tolerance of maize plants by up-regulation of aquaporin gene expressions in roots and the fungi themselves[J]. Chinese Journal of Plant Ecology,2012,36 (9):973−981.
    [100] 郝志鹏,谢伟,陈保冬. 丛枝菌根真菌在农业中的应用: 研究进展与挑战[J]. 科技导报,2022,40(3):87−98.

    HAO Z P,XIE W,CHEN B D. Application of arbuscular mycorrhizal fungi in agriculture: research progress and challenges[J]. Science and Technology Review,2022,40 (3):87−98.
    [101] 曹宁,符力,张玉斌,等. 低温对玉米苗期根系生长及磷养分吸收的影响[J]. 玉米科学,2008,16(4):58−60.

    CAO N,FU L,ZHANG Y B,et al. Effects of low temperature on root of maize seedling growth and phosphorus uptake[J]. Journal of Maize Sciences,2008,16 (4):58−60.
    [102] WHITELAW M A,HARDEN T J,HELYAR K R. Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum[J]. Soil Biology and Biochemistry,1999,31 (5):655−665. doi: 10.1016/S0038-0717(98)00130-8
    [103] 刘剑平,范秀娟,赵晓彤. 黄腐酸生物菌肥在康平县玉米试验效果分析[J]. 现代农业,2019(2):34−35. doi: 10.3969/j.issn.1008-0708.2019.02.025

    LIU J P,FAN X J,ZHAO X T. Analysis on the experimental effect of fulvic acid biological bacterial fertilizer on corn in Kangping County[J]. Modern Agriculture,2019 (2):34−35. doi: 10.3969/j.issn.1008-0708.2019.02.025
    [104] HAMEEDA B,HARINI G,RUPELA O P,et al. Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna[J]. Microbiological Research,2008,163 (2):234−242. doi: 10.1016/j.micres.2006.05.009
    [105] 王兰梦,郑立昊,郎多勇,等. 微生物肥料及其在中药生态农业中的前景分析[J]. 北方园艺,2022(2):141−147.

    WANG L M,ZHENG L H,LANG D Y,et al. Microbial fertilizer and its prospect in traditional Chinese medicine ecological agriculture[J]. Northern Horticulture,2022 (2):141−147.
    [106] 胡基华,张烨,张淑梅,等. 微生物菌肥对寒地大豆根际土壤真菌多样性的影响[J]. 大豆科学,2021,40(6):805−812.

    HU J H,ZHANG Y,ZHANG S M,et al. Effects of microbial fertilizer on fungal diversity of soybean rhizosphere soil in cold region[J]. Soybean Science,2021,40 (6):805−812.
    [107] 李俊, 沈德龙, 林先贵. 农业微生物研究与产业化进展 [M]. 北京: 科学出版社, 2011.

    LI J, SHEN D L, LIN X G. Progress in agricultural microbiology research and industrialization [M]. Beijing: Science Press, 2011.
    [108] 吴显峰. 大豆应用富思德大豆根瘤菌剂效果研究[J]. 现代农业科技,2012(5):79. doi: 10.3969/j.issn.1007-5739.2012.05.043

    WU X F. Study on the effect of applying Fuside soybean rhizobia agent to soybean[J]. Modern Agricultural Science and Technology,2012 (5):79. doi: 10.3969/j.issn.1007-5739.2012.05.043
    [109] 张红梅,顾和平,易金鑫,等. 微生物肥料对菜用大豆粒荚性状及鲜荚产量的影响[J]. 江苏农业科学,2009,37(3):344−345.

    ZHANG H M,GU H P,YI J X,et al. Effects of microbial fertilizer on the characteristics of grain and pod and the yield of fresh pod of vegetable soybean[J]. Jiangsu Agricultural Sciences,2009,37 (3):344−345.
    [110] 路宪春,于文清,刘文志,等. 生物有机肥与化肥配施对大豆生物性状及产量的影响[J]. 现代化农业,2014(1):17−19.

    LU X C,YU W Q,LIU W Z,et al. Effect of combined application of bio-organic fertilizer and chemical fertilizer on biological characteristics and yield of soybean[J]. Modernizing Agriculture,2014 (1):17−19.
    [111] 张淑梅,王玉霞,赵晓宇,等. 生物拌种剂防治大豆根腐病效果和机制[J]. 大豆科学,2009,28(5):863−868+874.

    ZHANG S M,WANG Y X,ZHAO X Y,et al. Efficacy and mechanism of biological seed coating agent against soybean root rot disease caused by Fusarium oxysporum f. sp. vedolens[J]. Soybean Science,2009,28 (5):863−868+874.
    [112] 孙晓慧. 应用播可润生物菌肥减少化肥试验总结[J]. 种子科技,2020,38(23):9−10+14. doi: 10.3969/j.issn.1005-2690.2020.23.005

    SUN X H. Experimental summary on reducing chemical fertilizer by sowing wettable biological bacterial fertilizer[J]. Seed Science and Technology,2020,38 (23):9−10+14. doi: 10.3969/j.issn.1005-2690.2020.23.005
    [113] 黄姗姗. 细菌发酵液诱导大豆抗寒及抗病性研究 [D]. 沈阳: 沈阳农业大学, 2011.

    HUANG S S. Study on cold resistance and disease resistance of soybean induced by bacterial fermentation broth [D]. Shenyang: Shenyang Agricultural University, 2011.
    [114] 姚延轩,接伟光,胡 崴,等. 微生物菌肥对大豆生长发育及根际土壤性质的影响综述[J]. 湖北农业科学,2019,58(20):21−24+38.

    YAO Y X,JIE W G,HU W,et al. Research progress on the effects of microbial fertilizer on the growth and development of soybean and the properties of rhizosphere soil[J]. Hubei Agricultural Sciences,2019,58 (20):21−24+38.
    [115] 马鸣超,刘丽,姜昕,等. 胶质类芽孢杆菌与慢生大豆根瘤菌复合接种效果评价[J]. 中国农业科学,2015,48(18):3600−3611. doi: 10.3864/j.issn.0578-1752.2015.18.004

    MA M C,LIU L,JIANG X,et al. Evaluation of the effect of Co-inoculant of Paenibacillus mucilaginosus and Bradyrhizobium japonicum in application[J]. Scientia Agricultura Sinica,2015,48 (18):3600−3611. doi: 10.3864/j.issn.0578-1752.2015.18.004
    [116] 万玉萍,向往,万勇. 根瘤菌肥在大豆栽培中的应用效果初报[J]. 湖南农业科学,2015(6):56−57.

    WAN Y P,XIANG W,WAN Y. Preliminary report on the application of rhizobia fertilizer(powder)application in soybean cultivation[J]. Hunan Agricultural Sciences,2015 (6):56−57.
    [117] 李秀平,王瑞鹏,年海,等. 耐铝根瘤菌的筛选及耐性菌株特性的研究[J]. 华南农业大学学报,2014,35(4):50−55. doi: 10.7671/j.issn.1001-411X.2014.04.010

    LI X P,WANG R P,NIAN H,et al. Screening for Al-tolerant rhizobium and a study on its characters[J]. Journal of South China Agricultural University,2014,35 (4):50−55. doi: 10.7671/j.issn.1001-411X.2014.04.010
    [118] 李佳男. 寒地大豆高产高蛋白栽培影响因素及遥感数据支持的技术集成 [D]. 哈尔滨: 东北农业大学, 2021.

    LI J N. Influencing factors of high yield and high protein cultivation of soybean in cold region and technical integration supported by remote sensing data [D]. Harbin: Northeast Agricultural University, 2021.
    [119] 王胜华,张凤萍. 壮园生态菌肥在大豆上的试验初报[J]. 中国农业信息,2016(11):110−111.

    WANG S H,ZHANG F P. Preliminary report on the experiment of ecological bacterial fertilizer in Zhuangyuan on soybean[J]. China Agricultural Informatics,2016 (11):110−111.
  • 加载中
表(4)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  40
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-02
  • 录用日期:  2023-03-22
  • 修回日期:  2023-03-22
  • 网络出版日期:  2023-06-05

目录

    /

    返回文章
    返回