留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

植物类病变形成机制与信号传导途径

叶刚 敖曼 崔震海 范可馨 关义新

叶刚,敖曼,崔震海,等. 植物类病变形成机制与信号传导途径[J]. 土壤与作物,2023,12(2):117 − 129 doi: 10.11689/sc.2022091301
引用本文: 叶刚,敖曼,崔震海,等. 植物类病变形成机制与信号传导途径[J]. 土壤与作物,2023,12(2):117 − 129 doi: 10.11689/sc.2022091301
YE G,AO M,CUI Z H,et al. Development mechanism and signal transduction pathway of lesion mimic mutation in plants[J]. Soils and Crops,2023,12(2):117 − 129 doi: 10.11689/sc.2022091301
Citation: YE G,AO M,CUI Z H,et al. Development mechanism and signal transduction pathway of lesion mimic mutation in plants[J]. Soils and Crops,2023,12(2):117 − 129 doi: 10.11689/sc.2022091301

植物类病变形成机制与信号传导途径

doi: 10.11689/sc.2022091301
基金项目: 中国科学院战略性先导科技专项(XDA24030103)
详细信息
    作者简介:

    叶刚(1998 − ),男,硕士研究生,研究方向为玉米遗传育种. E-mail: yegang20@mails.ucas.ac.cn

    通讯作者:

    关义新(1968 − ),男,研究员,研究方向为玉米遗传育种. E-mail: guanyixin@iga.ac.cn

  • 中图分类号: S432.1

Development mechanism and signal transduction pathway of lesion mimic mutation in plants

  • 摘要:

    植物类病变是指植物在无显著非生物胁迫、物理机械损伤或者外部致病因素的作用下,其叶片、叶鞘或整株上自发地出现坏死斑点的现象。这种局部细胞死亡的现象类似于某些致病菌感染的结果,其症状与植物超敏反应(Hypersensitive response, HR)的表征极为相似,是一种程序性细胞死亡(Programmed cell death, PCD)。许多类病变突变体组成性表达病程相关基因,并增强对某种或多种病原微生物的抗性,因而类病变突变体可作为研究植物防御反应和PCD的理想材料。本文对植物类病变突变体的来源、命名、类型、遗传方式、抗性特点、基因克隆、形成机制以及信号传导途径进行了总结,并展望了植物类病变突变体未来的研究方向,以期为进一步探索PCD调控机制和防御反应作用机理提供理论依据。

     

  • 图  1  部分植物类病变突变体的表型

    Figure  1.  Phenotypes of some plant lesion mimic mutants

    图  2  植物类病变形成的可能机制及其信号传导途径

    Figure  2.  Possible mechanism and signal transduction pathway of plant lesion mimic mutation

    表  1  部分植物类病变突变体的鉴定及基因功能

    Table  1.   Identification and gene function of some plant lesion mimic mutants

    植物
    Plant
    突变体
    Mutant
    全称
    Full name
    来源
    Origin
    类型
    Type
    染色体
    Chromosome
    遗传方式
    Inheritance
    基因功能
    Gene function
    参考文献
    Reference
    拟南芥
    Arabidopsis
    lsd1模拟抗病坏死1
    Lesions simulating disease resistance 1
    EMSK4SR编码一个锌指蛋白,负调控细胞死亡。Encodes a zinc finger protein, negative regulation of cell death.[21]
    acd1加速细胞死亡1
    Accelerated cell death 1
    EMSK3SR编码脱镁叶绿酸加氧酶。Encodes a pheophorbide oxygenase.
    [22]
    acd2加速细胞死亡2
    Accelerated cell death 2
    EMSK4SR编码叶绿素代谢降解还原酶。Encodes reductase for chlorophyll metabolism and degradation.
    [23]
    acd5加速细胞死亡5
    Accelerated cell death 5
    EMSK5SR编码脂肪激酶。
    Encodes fat kinase.
    [24]
    acd11加速细胞死亡11
    Accelerated cell death 11
    KOK2SR编码鞘氨醇转运蛋白,负调控依赖于SA的防御反应。Encodes sphingosine transfer,negative regulation of SA-dependent defense response.
    [25]
    mod1嵌合死亡1
    Mosaic death 1
    EMS-2SR编码脂肪酸合成关键酶-烯酰脂酰载体蛋白(Enoyl-acyl carrier protein, ACP)还原酶。Encodes ACP reductase which is a key enzyme of fatty acid synthesis.[26]
    cpn1Copine 1T-DNAM5SR编码copine蛋白,低湿度的正调控因子。Encodes copine protein,a positive regulatory factor of low humidity.[27]
    sscd1短日照敏感细胞死亡1
    Short-day sensitive cell death 1
    EMS-1SR编码酪氨酸生物降解关键酶-延胡索酰乙酰乙酸水解酶(Fumarylacetoacetate hydrolase, FAH)。Encodes FAH which is a key enzyme for tyrosine biodegradation.
    [28]
    cpr22防御基因组成性
    表达22
    Constitutive expresser of PR genes 22
    T-DNAM2SeD环核苷酸门控通道(Cyclic nucleotide-gated channel, CNGC)家族成员,正调控抗性反应。A member of the CNGC family,positive regulation of resistance response.[29]
    hlm1HR样类病变1
    HR-like lesion mimic 1
    T-DNAS5SR编码环核苷酸门控通道CNGC4,正调控细胞死亡和防御反应。Encodes cyclic nucleotide-gated channel CNGC4,positive regulation of cell death and defense response.[14]
    水稻
    Rice
    spl5斑点叶5
    Spotted leaf 5
    γ-ray
    -
    7
    SR
    编码转录剪接因子SF3b3(Splicing factor 3b subunit 3),负调控细胞死亡和防御反应。Encodes splicing factor SF3b3,negative regulation of cell death and defense response.[30]
    spl7斑点叶7
    Spotted leaf 7
    γ-ray
    M
    5
    SR
    编码热激蛋白转录因子,光温下负调控细胞死亡。Encodes a heat shock protein transcription factor,negative regulation of cell death under light and temperature.
    [31]
    spl11斑点叶11
    Spotted leaf 11
    EMS
    K
    12
    SR
    编码U-box /ARM(Armadillo)重复蛋白,通过泛素化途径负调控PCD。Encodes U-box/ARM repeat protein,negative regulation of PCD by ubiquitination.
    [32]
    nls1坏死叶鞘1
    Necrotic leaf sheath 1
    T-DNA
    -
    11
    SR
    编码CC-NB-LRR型蛋白,参与不依赖SA和NPR1的防御信号途径。Ecodes CC-NB-LRR type protein,independent on the defense signal pathway of SA and NPR1.
    [33]
    rlin1水稻坏死起始1
    Rice lesion initiation 1
    T-DNAK4SR编码粪卟啉原III氧化酶。Ecodes coproporphyrinogen III oxidase.
    [34]
    ssi2
    SA不敏感抑制因子2
    Suppressor of SA insensitive 2
    Tos17
    -
    1
    SR
    编码脂肪酸脱氢酶,负调控SA介导的水稻防御反应。Encodes fatty acid dehydrogenase,negative regulation of rice defense response mediated by SA.[35]
    OsEDR1水稻增强抗性1
    Oryza sativa enhanced disease resistance 1
    KO
    -
    10
    SR
    通过促进乙烯生物合成负调控水稻防御反应。Negative regulation of rice defense response by promoting ethylene biosynthesis.[36]
    oscul3a
    Oryza sativa cullin 3a
    EMSK2SR编码Cullin类泛素连接酶,负调控水稻细胞死亡及抗性反应。Encodes Cullin like ubiquitin ligase,negative regulation of rice cell death and resistance response.[37]
    NPR1
    防御基因过表达1
    Nonexpresser of PR
    genes 1
    OV
    -
    1
    SD
    SA介导的植物系统获得性抗性的全局性调控因子。An global regulatory factor of plant system acquired resistance mediated by SA.[38]
    Sl
    损伤坏死
    Sekiguchi lesion
    MNU
    K
    12
    SR
    编码细胞色素P450单加氧酶。
    Encodes cytochrome P450 monooxygenase.
    [39]
    hpl3
    脂氢过氧化物
    裂解酶3
    Hydroperoxide lyase 3
    γ-rayK2SR编码脂氢过氧化物裂解酶,调控水稻特异性防御反应。Encodes hydroperoxide lyase,regulation of rice specific defense response.[40]
    noe1
    一氧化氮过量1
    Nitric oxide excess 1
    T-DNA-3SR编码水稻过氧化氢酶OsCATC,负调控细胞死亡。Encodes rice catalase OsCATC,negative regulation of cell death.[41]
    OsAAP3
    水稻氨基酸通透酶3
    Oryza sativa amino acid permease 3
    OV
    -
    1
    SD
    编码氨基酸转运蛋白,正调控细胞死亡。Encodes amino acid transporter,positive regulation of cell death.
    [42]
    玉米
    Maize
    lls1
    致死性叶斑1
    Lethal leaf spot 1
    Mu
    K
    1
    SR
    编码芳香羟化双加氧酶,正调控细胞死亡。
    Encodes aromatic hydroxylated dioxygenase,positive regulation of cell death.
    [43]
    les30
    病变30
    Lesion 30
    MuK1SR编码脱镁叶绿酸a加氧酶,负调控细胞死亡和防御反应。Encodes pheophorbide a oxygenase,negative regulation of cell death and defense response.[17]
    Les22
    病变22
    Lesion 22
    MuK1SD编码卟啉代谢途径关键酶-尿卟啉脱羧酶。
    Encodes porphyrin decarboxylase which is a key enzyme in porphyrin metabolic pathway.
    [44]
    大麦
    Barley
    mlo抗霉位点o
    Mildew resistance locus o
    EMSS4HSR编码跨膜蛋白,负调控细胞死亡。
    Encodes transmembrane proteins,negative regulation of cell death
    [45]
    番茄
    Tomato
    Pto
    番茄紫丁香假单胞菌
    Pseudomonas syringae pv. tomato
    OVK5SD编码一种丝氨酸/苏氨酸蛋白激酶。
    Encodes a serine/threonine protein kinase.
    [46]
    大豆
    Soybean
    Gmlmm2大豆类病变突变体2
    Glycine max lesion mimic mutant 2
    EMSK14SR编码粪卟啉原III氧化酶,负调控防御反应。
    Encodes coproporphyrinogen III oxidase,negative regulation of defense response.
    [47]
    注:EMS:甲基磺酸乙酯;KO:敲除;OV:过表达;MNU:N-甲基亚硝基脲;K:扩散型;M:环境敏感型;S:起始型;SR:单隐性;SD:单显性;SeD:半显性。
    Note:EMS:Ethylmethane sulfonate;KO:Knockout;OV:Overexpression;MNU:N-methyl nitrosourea;K:Propagation class;M:Environment sensitive class;S:Initiation class;SR:Single recessive;SD:Single dominant;SeD:Semidominant.
    下载: 导出CSV
  • [1] 刘宝玉,刘军化,杜丹,等. 水稻类病斑突变体spl34的鉴定与基因精细定位[J]. 作物学报,2018,44(3):332−342. doi: 10.3724/SP.J.1006.2018.00332

    LIU B Y,LIU J H,DU D,et al. Identification and gene mapping of a lesion mimic mutant spl34 in rice (Oryza sativa L. )[J]. Acta Agronomica Sinica,2018,44 (3):332−342. doi: 10.3724/SP.J.1006.2018.00332
    [2] SIMMONS C,HANTKE S,GRANT S,et al. The maize lethal leaf spot 1 mutant has elevated resistance to fungal infection at the leaf epidermis[J]. Molecular Plant-Microbe Interactions,1998,11 (11):1110−1118. doi: 10.1094/MPMI.1998.11.11.1110
    [3] DANGL J L,DIETRICH R A,RICHBERG M H. Death don't have no mercy: cell death programs in plant-microbe interactions[J]. The Plant Cell,1996,8 (10):1793−1807. doi: 10.2307/3870230
    [4] HUANG Q N,YANG Y,SHI Y F,et al. Spotted-leaf mutants of rice (Oryza sativa)[J]. Rice Science,2010,17 (4):247−256. doi: 10.1016/S1672-6308(09)60024-X
    [5] HARKENRIDER M,SHARMA R,DE VLEESSCHAUWER D,et al. Overexpression of rice wall-associated kinase 25 (OsWAK25) alters resistance to bacterial and fungal pathogens[J]. PLoS One,2016,11 (1):e0147310. doi: 10.1371/journal.pone.0147310
    [6] WU J L,WU C J,LEI C L,et al. Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics[J]. Plant Molecular Biology,2005,59 (1):85−97. doi: 10.1007/s11103-004-5112-0
    [7] 钱婧雅,刘芬,屈成,等. 水稻类病斑突变基因的克隆及其机制研究进展[J]. 分子植物育种,2021,19(10):3274−3280. doi: 10.13271/j.mpb.019.003274

    QIAN J Y,LIU F,QU C,et al. Research progress on cloning and mechanism of rice lesion mimic genes[J]. Molecular Plant Breeding,2021,19 (10):3274−3280. doi: 10.13271/j.mpb.019.003274
    [8] 肖桂青,张元夫,杨必能,等. 植物类病变突变体研究进展[J]. 分子植物育种,2017,15(1):290−299. doi: 10.13271/j.mpb.015.000290

    XIAO G Q,ZHANG Y F,YANG B N,et al. Research progress of plant lesion mimic mutants[J]. Molecular Plant Breeding,2017,15 (1):290−299. doi: 10.13271/j.mpb.015.000290
    [9] 刘思辰,曹晓宁,王海岗,等. 植物类病变突变体的研究进展[J]. 山西农业科学,2020,48(2):272−276.

    LIU S C,CAO X N,WANG H G,et al. Research progress of plant lesion mimic mutants[J]. Journal of Shanxi Agricultural Sciences,2020,48 (2):272−276.
    [10] LORRAIN S,VAILLEAU F,BALAGUÉ C,et al. Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants?[J]. Trends in Plant Science,2003,8 (6):263−271. doi: 10.1016/S1360-1385(03)00108-0
    [11] 陈析丰,金杨,马伯军. 水稻类病变突变体及抗病性的研究进展[J]. 植物病理学报,2011,41(1):1−9.

    CHEN X F,JIN Y,MA B J. Progress on the studies of rice lesion mimics and their resistant mechanism to the pathogens[J]. Acta Phytopathologica Sinica,2011,41 (1):1−9.
    [12] 焦然,徐娜,胡娟,等. 水稻类病变突变体性状及分子机理研究进展[J]. 中国水稻科学,2018,32(3):285−295.

    JIAO R,XU N,HU J,et al. Advances in traits of lesion mimic mutants and its molecular mechanisms in rice[J]. Chinese Journal of Rice Science,2018,32 (3):285−295.
    [13] 王建军,朱旭东,王林友,等. 水稻类病斑突变体的生理与遗传分析[J]. 植物生理与分子生物学学报,2004,30(3):331−338.

    WANG J J,ZHU X D,WANG L Y,et al. Physiological and genetic analysis of lesion resembling disease mutants (lrd) of Oryza sativa L[J]. Acta Photophysiologica Sinica,2004,30 (3):331−338.
    [14] BALAGUÉ C,LIN B Q,ALCON C,et al. HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family[J]. The Plant Cell,2003,15 (2):365−379. doi: 10.1105/tpc.006999
    [15] HU G,RICHTER T E,HULBERT S H,et al. Disease lesion mimicry caused by mutations in the rust resistance gene rp1[J]. The Plant Cell,1996,8 (8):1367−1376. doi: 10.2307/3870307
    [16] MU X,LI J,DAI Z,et al. Commonly and specifically activated defense responses in maize disease lesion mimic mutants revealed by integrated transcriptomics and metabolomics analysis[J]. Frontiers in Plant Science,2021,12:638792. doi: 10.3389/fpls.2021.638792
    [17] LI J K,CHEN M Y,FAN T Y,et al. Underlying mechanism of accelerated cell death and multiple disease resistance in a maize lethal leaf spot 1 allele[J]. Journal of Experimental Botany,2022,73 (12):3991−4007. doi: 10.1093/jxb/erac116
    [18] WANG H Z,HOU J B,YE P,et al. A teosinte-derived allele of a MYB transcription repressor confers multiple disease resistance in maize[J]. Molecular Plant,2021,14 (11):1846−1863. doi: 10.1016/j.molp.2021.07.008
    [19] LI C,LIU H,WANG J,et al. Characterization and fine mapping of a lesion mimic mutant (Lm5) with enhanced stripe rust and powdery mildew resistance in bread wheat (Triticum aestivum L. )[J]. Theoretical and Applied Genetics,2022,135 (2):421−438. doi: 10.1007/s00122-021-03973-1
    [20] YAN J,FANG Y,XUE D. Advances in the genetic basis and molecular mechanism of lesion mimic formation in rice[J]. Plants (Basel, Switzerland),2022,11 (16):2169.
    [21] DIETRICH R A,RICHBERG M H,SCHMIDT R,et al. A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death[J]. Cell,1997,88 (5):685−694. doi: 10.1016/S0092-8674(00)81911-X
    [22] TANAKA R,HIRASHIMA M,SATOH S,et al. The Arabidopsis-accelerated cell death Gene ACD1 is Involved in Oxygenation of Pheophorbide a: inhibition of the pheophorbide a oxygenase activity does not lead to the "stay-green" phenotype in Arabidopsis[J]. Plant and Cell Physiology,2003,44 (12):1266−1274. doi: 10.1093/pcp/pcg172
    [23] MACH J M,CASTILLO A R,HOOGSTRATEN R,et al. The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms[J]. PNAS,2001,98 (2):771−776. doi: 10.1073/pnas.98.2.771
    [24] GREENBERG J T,SILVERMAN F P,LIANG H. Uncoupling salicylic acid-dependent cell death and defense-related responses from disease resistance in the Arabidopsis mutant acd5[J]. Genetics,2000,156 (1):341−350. doi: 10.1093/genetics/156.1.341
    [25] BRODERSEN P,PETERSEN M,PIKE H M,et al. Knockout of Arabidopsis accelerated-cell-death11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense[J]. Genes and Development,2002,16 (4):490−502. doi: 10.1101/gad.218202
    [26] MOU Z,HE Y,DAI Y,et al. Deficiency in fatty acid synthase leads to premature cell death and dramatic alterations in plant morphology[J]. PeerJ,2000,12 (3):405−418.
    [27] JAMBUNATHAN N,SIANI J M,MCNELLIS T W. A humidity-sensitive Arabidopsis copine mutant exhibits precocious cell death and increased disease resistance[J]. The Plant Cell,2001,13 (10):2225−2240. doi: 10.1105/tpc.010226
    [28] HAN C Y,REN C M,ZHI T T,et al. Disruption of fumarylacetoacetate hydrolase causes spontaneous cell death under short-day conditions in Arabidopsis[J]. Plant Physiology,2013,162 (4):1956−1964. doi: 10.1104/pp.113.216804
    [29] YOSHIOKA K,KACHROO P,TSUI F,et al. Environmentally sensitive, SA-dependent defense responses in the cpr22 mutant of Arabidopsis[J]. The Plant Journal,2001,26 (4):447−459. doi: 10.1046/j.1365-313X.2001.2641039.x
    [30] CHEN X F,HAO L,PAN J W,et al. SPL5, a cell death and defense-related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice[J]. Molecular Breeding,2012,30 (2):939−949. doi: 10.1007/s11032-011-9677-4
    [31] YAMANOUCHI U,YANO M,LIN H,et al. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein[J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99 (11):7530−7535. doi: 10.1073/pnas.112209199
    [32] ZENG L R,QU S H,BORDEOS A,et al. Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/Armadillo repeat protein endowed with E3 ubiquitin ligase activity[J]. The Plant Cell,2004,16 (10):2795−2808. doi: 10.1105/tpc.104.025171
    [33] TANG J,ZHU X,WANG Y,et al. Semi-dominant mutations in the CC-NB-LRR-type R gene, NLS1, lead to constitutive activation of defense responses in rice[J]. The Plant Journal,2011,66 (6):996−1007. doi: 10.1111/j.1365-313X.2011.04557.x
    [34] SUN C H,LIU L C,TANG J Y,et al. RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice[J]. Journal of Genetics and Genomics,2011,38 (1):29−37. doi: 10.1016/j.jcg.2010.12.001
    [35] JIANG C J,SHIMONO M,MAEDA S,et al. Suppression of the rice fatty-acid desaturase gene OsSSI 2 enhances resistance to blast and leaf blight diseases in rice[J]. Molecular Plant-Microbe Interactions,2009,22 (7):820−829. doi: 10.1094/MPMI-22-7-0820
    [36] SHEN X,LIU H,YUAN B,et al. OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis[J]. Plant, Cell and Environment,2011,34 (2):179−191. doi: 10.1111/j.1365-3040.2010.02219.x
    [37] LIU Q N,NING Y S,ZHANG Y X,et al. OsCUL3a negatively regulates cell death and immunity by degrading OsNPR1 in rice[J]. The Plant Cell,2017,29 (2):345−359. doi: 10.1105/tpc.16.00650
    [38] CHERN M,FITZGERALD H A,CANLAS P E,et al. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light[J]. Molecular Plant-Microbe Interactions,2005,18 (6):511−520. doi: 10.1094/MPMI-18-0511
    [39] FUJIWARA T,MAISONNEUVE S,ISSHIKI M,et al. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice[J]. Journal of Biological Chemistry,2010,285 (15):11308−11313. doi: 10.1074/jbc.M109.091371
    [40] TONG X,QI J,ZHU X,et al. The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway[J]. The Plant Journal,2012,71 (5):763−775. doi: 10.1111/j.1365-313X.2012.05027.x
    [41] LIN A H,WANG Y Q,TANG J Y,et al. Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice[J]. Plant Physiology,2011,158 (1):451−464.
    [42] WEI Q,YAN Z,XIONG Y,et al. Altered expression of OsAAP3 influences rice lesion mimic and leaf senescence by regulating arginine transport and nitric oxide pathway[J]. International Journal of Molecular Sciences,2021,22 (4):2181. doi: 10.3390/ijms22042181
    [43] GRAY J,CLOSE P S,BRIGGS S P,et al. A novel suppressor of cell death in plants encoded by the Lls1 gene of maize[J]. Cell,1997,89 (1):25−31. doi: 10.1016/S0092-8674(00)80179-8
    [44] HU G S,YALPANI N,BRIGGS S P,et al. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize[J]. The Plant Cell,1998,10 (7):1095−1105. doi: 10.1105/tpc.10.7.1095
    [45] BÜSCHGES R,HOLLRICHER K,PANSTRUGA R,et al. The barley mlo gene: a novel control element of plant pathogen resistance[J]. Cell,1997,88 (5):695−705. doi: 10.1016/S0092-8674(00)81912-1
    [46] TANG X Y,XIE M T,KIM Y J,et al. Overexpression of pto activates defense responses and confers broad resistance[J]. The Plant Cell,1999,11 (1):15−29. doi: 10.1105/tpc.11.1.15
    [47] MA J,YANG S,WANG D,et al. Genetic mapping of a light-dependent lesion mimic mutant reveals the function of coproporphyrinogen III oxidase homolog in soybean[J]. Frontiers in Plant Science,2020,11:557. doi: 10.3389/fpls.2020.00557
    [48] WU C J,BORDEOS A,MADAMBA M R S,et al. Rice lesion mimic mutants with enhanced resistance to diseases[J]. Molecular Genetics and Genomics,2008,279 (6):605−619. doi: 10.1007/s00438-008-0337-2
    [49] JOHAL G S. Disease lesion mimics mutants of maize [J]. APSnet Feature Articles, 2007.
    [50] VRANOVÁ E,INZÉ D,VAN BREUSEGEM F. Signal transduction during oxidative stress[J]. Journal of Experimental Botany,2002,53 (372):1227−1236. doi: 10.1093/jxb/53.372.1227
    [51] OVERMYER K,TUOMINEN H,KETTUNEN R,et al. Ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death[J]. The Plant Cell,2000,12 (10):1849−1862. doi: 10.1105/tpc.12.10.1849
    [52] JABS T,DIETRICH R A,DANGL J L. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide[J]. Science,1996,273 (5283):1853−1856. doi: 10.1126/science.273.5283.1853
    [53] HAO Q Q,LYU B,TANG Y H,et al. Deterioration of antioxidant competence in barley lesion mimic mutant 194[J]. Phyton,2019,88 (2):109−117. doi: 10.32604/phyton.2019.06734
    [54] UENO M,SHIBATA H,KIHARA J,et al. Increased tryptophan decarboxylase and monoamine oxidase activities induce Sekiguchi lesion formation in rice infected with Magnaporthe grisea[J]. The Plant Journal,2003,36 (2):215−228. doi: 10.1046/j.1365-313X.2003.01875.x
    [55] 刘道峰,程祝宽,刘国庆,等. 水稻类病变突变体lmi的鉴定及其基因定位[J]. 科学通报,2003,48(8):831−835. doi: 10.3321/j.issn:0023-074X.2003.08.017

    LIU D F,CHENG Z K,LIU G Q,et al. Identification and gene mapping of a lesion mimic mutant lmi in rice[J]. Chinese Science Bulletin,2003,48 (8):831−835. doi: 10.3321/j.issn:0023-074X.2003.08.017
    [56] MATEO A,MÜHLENBOCK P,RUSTÉRUCCI C,et al. LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy[J]. Plant Physiology,2004,136 (1):2818−2830. doi: 10.1104/pp.104.043646
    [57] CHAMNONGPOL S,WILLEKENS H,MOEDER W,et al. Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco[J]. PNAS,1998,95 (10):5818−5823. doi: 10.1073/pnas.95.10.5818
    [58] KLIEBENSTEIN D J,DIETRICH R A,MARTIN A C,et al. LSD1 regulates salicylic acid induction of copper zinc superoxide dismutase in Arabidopsis thaliana[J]. Molecular Plant-Microbe Interactions,1999,12 (11):1022−1026. doi: 10.1094/MPMI.1999.12.11.1022
    [59] PIETERSE C M J,LEON-REYES A,VAN DER ENT S,et al. Networking by small-molecule hormones in plant immunity[J]. Nature Chemical Biology,2009,5 (5):308−316. doi: 10.1038/nchembio.164
    [60] PEREIRA M S,DE ARAÚJO S S,NAGEM R A P,et al. The role of remote flavin adenine dinucleotide pieces in the oxidative decarboxylation catalyzed by salicylate hydroxylase[J]. Bioorganic Chemistry,2022,119:105561. doi: 10.1016/j.bioorg.2021.105561
    [61] WEYMANN K,HUNT M,UKNES S,et al. Suppression and restoration of lesion formation in Arabidopsis lsd mutants[J]. The Plant Cell,1995,7 (12):2013−2022. doi: 10.2307/3870147
    [62] PENNINCKX I A M A,THOMMA B P H J,BUCHALA A,et al. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis[J]. The Plant Cell,1998,10 (12):2103−2113. doi: 10.1105/tpc.10.12.2103
    [63] THOMMA B P H J,EGGERMONT K,PENNINCKX I A M A,et al. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens[J]. PNAS,1998,95 (25):15107−15111. doi: 10.1073/pnas.95.25.15107
    [64] GUO H W,ECKER J R. Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor[J]. Cell,2003,115 (6):667−677. doi: 10.1016/S0092-8674(03)00969-3
    [65] DEVADAS S K,RAINA R. Preexisting systemic acquired resistance suppresses hypersensitive response-associated cell death in Arabidopsishrl1 mutant[J]. Plant Physiology,2002,128 (4):1234−1244. doi: 10.1104/pp.010941
    [66] DELLEDONNE M,ZEIER J,MAROCCO A,et al. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98 (23):13454−13459. doi: 10.1073/pnas.231178298
    [67] DE PINTO M C,TOMMASI F,DE GARA L. Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco bright-yellow 2 cells[J]. Plant Physiology,2002,130 (2):698−708. doi: 10.1104/pp.005629
    [68] YAMASAKI H,SHIMOJI H,OHSHIRO Y,et al. Inhibitory effects of nitric oxide on oxidative phosphorylation in plant mitochondria[J]. Nitric Oxide,2001,5 (3):261−270. doi: 10.1006/niox.2001.0353
    [69] WANG J,CHEN T,HAN M,et al. Plant NLR immune receptor Tm-22 activation requires NB-ARC domain-mediated self-association of CC domain[J]. PLoS Pathogens,2020,16 (4):e1008475. doi: 10.1371/journal.ppat.1008475
    [70] RUSTÉRUCCI C,AVIV D H,HOLT B F,et al. The disease resistance signaling components EDS1 and PAD4 are essential regulators of the cell death pathway controlled by LSD1 in Arabidopsis[J]. The Plant Cell,2001,13 (10):2211−2224. doi: 10.1105/tpc.010085
    [71] DONG X N. NPR1, all things considered[J]. Current Opinion in Plant Biology,2004,7 (5):547−552. doi: 10.1016/j.pbi.2004.07.005
    [72] TADA Y,SPOEL S H,PAJEROWSKA-MUKHTAR K,et al. Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins[J]. Science,2008,321 (5891):952−956. doi: 10.1126/science.1156970
    [73] WIERMER M,FEYS B J,PARKER J E. Plant immunity: the EDS1 regulatory node[J]. Current Opinion in Plant Biology,2005,8 (4):383−389. doi: 10.1016/j.pbi.2005.05.010
    [74] EULGEM T,SOMSSICH I E. Networks of WRKY transcription factors in defense signaling[J]. Current Opinion in Plant Biology,2007,10 (4):366−371. doi: 10.1016/j.pbi.2007.04.020
    [75] LI J,BRADER G,KARIOLA T,et al. WRKY70 modulates the selection of signaling pathways in plant defense[J]. The Plant Journal,2006,46 (3):477−491. doi: 10.1111/j.1365-313X.2006.02712.x
    [76] SHIM J S,JUNG C,LEE S,et al. AtMYB44 regulates WRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling[J]. The Plant Journal,2013,73 (3):483−495. doi: 10.1111/tpj.12051
    [77] DEVADAS S K,ENYEDI A,RAINA R. The Arabidopsis hrl1 mutation reveals novel overlapping roles for salicylic acid, jasmonic acid and ethylene signalling in cell death and defence against pathogens[J]. The Plant Journal,2002,30 (4):467−480. doi: 10.1046/j.1365-313X.2002.01300.x
    [78] DELLEDONNE M,XIA Y J,DIXON R A,et al. Nitric oxide functions as a signal in plant disease resistance[J]. Nature,1998,394 (6693):585−588. doi: 10.1038/29087
    [79] DURNER J,WENDEHENNE D,KLESSIG D F. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose[J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95 (17):10328−10333. doi: 10.1073/pnas.95.17.10328
    [80] HUANG X,STETTMAIER K,MICHEL C,et al. Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana[J]. Planta,2004,218 (6):938−946. doi: 10.1007/s00425-003-1178-1
    [81] MUR L A J,LAARHOVEN L J J,HARREN F J M,et al. Nitric oxide interacts with salicylate to regulate biphasic ethylene production during the hypersensitive response[J]. Plant Physiology,2008,148 (3):1537−1546. doi: 10.1104/pp.108.124404
    [82] TIAN M,RAO L B,LI J Y. Active oxygen species in plant cells and their physiological functions[J]. Plant Physiol. Commun.,2005,41:235−241.
    [83] TORRES M A,DANGL J L,JONES J D. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response[J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99 (1):517−522. doi: 10.1073/pnas.012452499
    [84] YOU Q Y,ZHAI K R,YANG D L,et al. An E3 ubiquitin ligase-BAG protein module controls plant innate immunity and broad-spectrum disease resistance[J]. Cell Host and Microbe,2016,20 (6):758−769.
    [85] INOUE H,HAYASHI N,MATSUSHITA A,et al. Blast resistance of CC-NB-LRR protein Pb1 is mediated by WRKY45 through protein-protein interaction[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110 (23):9577−9582. doi: 10.1073/pnas.1222155110
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  347
  • HTML全文浏览量:  103
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-13
  • 录用日期:  2022-11-01
  • 修回日期:  2022-10-25
  • 网络出版日期:  2023-06-05

目录

    /

    返回文章
    返回