留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

保护性耕作对黑土不同土层土壤固氮菌丰度和群落结构的影响

李猛 李海瑜 高明

李猛, 李海瑜, 高明. 保护性耕作对黑土不同土层土壤固氮菌丰度和群落结构的影响[J]. 土壤与作物, 2022, 11(3): 273-281. doi: 10.11689/j.issn.2095-2961.2022.03.004
引用本文: 李猛, 李海瑜, 高明. 保护性耕作对黑土不同土层土壤固氮菌丰度和群落结构的影响[J]. 土壤与作物, 2022, 11(3): 273-281. doi: 10.11689/j.issn.2095-2961.2022.03.004
LI Meng, LI Haiyu, GAO Ming. Effect of conservation tillage on the abundance and diversities of soil diazotrophic communities in different soil layers of Mollisol[J]. Soils and Crops, 2022, 11(3): 273-281. doi: 10.11689/j.issn.2095-2961.2022.03.004
Citation: LI Meng, LI Haiyu, GAO Ming. Effect of conservation tillage on the abundance and diversities of soil diazotrophic communities in different soil layers of Mollisol[J]. Soils and Crops, 2022, 11(3): 273-281. doi: 10.11689/j.issn.2095-2961.2022.03.004

保护性耕作对黑土不同土层土壤固氮菌丰度和群落结构的影响

doi: 10.11689/j.issn.2095-2961.2022.03.004
基金项目: 

国家重点研发计划子课题 2021YFD1500801

详细信息
    作者简介:

    李猛(1984-),男,高级工程师,主要从事土壤侵蚀相关研究.E-mail:limeng@iga.ac.cn

  • 中图分类号: S513

Effect of conservation tillage on the abundance and diversities of soil diazotrophic communities in different soil layers of Mollisol

  • 摘要:

    东北黑土由于近几十年持续性高强度的利用,已经出现肥力下降等问题。保护性耕作是防止土壤退化的有效措施,可影响土壤微生物的丰度和多样性,然而保护性耕作对东北黑土固氮菌群落结构的影响仍不清楚。本研究利用15年免耕和传统耕作试验,采用高通量测序方法,探讨东北地区免耕和传统耕作条件下0~5 cm和5~20 cm两个土壤深度的固氮菌群落的丰度、多样性和组成的差异,以及与土壤理化性质的相关关系。研究结果表明,免耕和传统耕作下土壤固氮菌在门水平上变形菌门相对丰度最大;属水平上慢生根瘤菌属的相对丰度最大。耕作方式、土壤深度对nifH基因拷贝数、Chao 1和Shannon指数均无显著影响,PCA分析表明,免耕和传统耕作显著影响土壤固氮菌群落的组成,土壤容重与PC1显著相关。Mantel test检验表明,固氮菌群落与土壤容重显著相关。本研究结果表明免耕通过影响土壤容重改变了土壤固氮菌的群落组成。本研究加深了保护性耕作对土壤固氮菌群落影响的理解,为东北黑土区保护性耕作的应用提供了理论依据。

     

  • 图  1  固氮菌基因丰度对耕作和土壤深度的响应

    注:NT5代表免耕0~5 cm深度; NT20代表免耕5~20 cm深度; CT5代表传统耕作0~5 cm深度; CT20代表传统耕作5~20 cm深度。下同。

    Figure  1.  Soil nifH gene abundance response to tillage and soil depth

    Note: NT5, no tillage at soil depths of 0~5 cm; NT20, no tillage at soil depths of 5~20 cm; CT5, conventional tillage at soil depths of 0~5 cm; CT20, conventional tillage at soil depths of 5~20 cm.The same is as below.

    图  2  耕作和土壤深度对土壤固氮菌属水平上相对丰度的影响

    Figure  2.  Effects of tillage and soil depth on relative abundance of soil diazotrophic community at genus level

    图  3  土壤固氮菌群落多样性指数对耕作和土壤深度的响应

    Figure  3.  Soil diazotrophic community diversity indices response to tillage and soil depth

    图  4  土壤固氮菌群落组成的PCA分析

    Figure  4.  Soil diazotrophic community composition indicated by principal co-ordinates analysis

    图  5  土壤理化属性与固氮菌群落的相关性

    注:SOC代表土壤有机碳; DOC代表可溶性碳; TN代表总氮; TP代表总磷; AP代表有效磷; TK代表全钾; AK代表速效钾;BD代表容重;显著相关(**代表P < 0.01; *代表P < 0.05)。

    Figure  5.  Correlation between diazotrophic community and soil properties

    Note: SOC indicates soil organic carbon; DOC indicates dissolved organic carbon; TN indicates total nitragen; TP indicates total phosphorus; AP indicates available phosphorus; TK indicates total potassium; AK indicates available potassium; BD indicates bulk density.Significant correlations (** indicates P < 0.01;* indicates P < 0.05).

    表  1  土壤固氮菌群落与土壤理化属性Mantel test分析

    Table  1.   Mantel test analysis between soil diazotrophic community and soil properties

    SOC DOC TN NO3--N NH4+-N TP AP TK AK BD pH
    r -0.129 -0.125 -0.122 0.030 -0.112 0.008 -0.058 -0.057 -0.055 0.455* 0.450
    P 0.408 0.478 0.501 0.863 0.598 0.974 0.788 0.775 0.757 0.003 0.060
    注:SOC代表土壤有机碳; DOC代表可溶性碳; TN代表总氮; TP代表总磷; AP代表有效磷; TK代表全钾; AK代表速效钾;BD代表容重;显著相关(**代表P < 0.01; *代表P < 0.05)。
    Note: SOC indicates soil organic carbon; DOC indicates dissolved organic carbon; TN indicates total nitragen; TP indicates total phosphorus; AP indicates available phosphorus; TK indicates total potassium; AK indicates available potassium; BD indicates bulk density.Significant correlations (** indicates P < 0.01;* indicates P < 0.05).
    下载: 导出CSV
  • [1] LIU X B, LEE BURRAS C, KRAVCHENKO Y S, et al. Overview of Mollisols in the world: distribution, land use and management[J]. Canadian Journal of Soil Science, 2012, 92(3): 383-402. doi: 10.4141/cjss2010-058
    [2] YANG X M, ZHANG X P, DENG W, et al. Black soil degradation by rainfall erosion in Jilin, China[J]. Land Degradation and Development, 2003, 14(4): 409-420. doi: 10.1002/ldr.567
    [3] CANFIELD D E, GLAZERA N, FALKOWSKI P G. The evolution and future of Earth's nitrogen cycle[J]. Science, 2010, 330(6001): 192-196. doi: 10.1126/science.1186120
    [4] CHEN H, ZHENG C Y, QIAO Y Q, et al. Long-term organic and inorganic fertilization alters the diazotrophic abundance, community structure, and co-occurrence patterns in a vertisol[J]. Science of the Total Environment, 2021, 766: 142441. doi: 10.1016/j.scitotenv.2020.142441
    [5] POLY F, RANJARD L, NAZARET S, et al. Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties[J]. Applied and Environmental Microbiology, 2001, 67(5): 2255-2262. doi: 10.1128/AEM.67.5.2255-2262.2001
    [6] PICENO Y M, LOVELL C R. Stability in natural bacterial communities: Ⅰ. Nutrient addition effects on rhizosphere diazotroph assemblage composition[J]. Microbial Ecology, 2000, 39(1): 32-40. doi: 10.1007/s002489900192
    [7] SHAFFER B T, WIDMER F, PORTEOUS L A, et al. Temporal and spatial distribution of the nifH gene of N2 fixing bacteria in forests and clearcuts in western Oregon[J]. Microbial Ecology, 2000, 39(1): 12-21. doi: 10.1007/s002489900183
    [8] BUCKLEY D H, HUANGYUTITHAM V, HSU S F, et al. Stable isotope probing with 15N2 reveals novel noncultivated diazotrophs in soil[J]. Applied and Environmental Microbiology, 2007, 73(10): 3196-3204. doi: 10.1128/AEM.02610-06
    [9] TANG H M, LI C, CHENG KK, et al. Effect of different short-term tillage management on nitrogen-fixing bacteria community in a double-cropping paddy field of Southern China[J]. Journal of Basic Microbiology, 2021, 61(3): 241-252. doi: 10.1002/jobm.202000608
    [10] CALDEROLI P A, COLLAVINO MM, BEHRENDS KRAEMER F, et al. Analysis of nifH-RNA reveals phylotypes related to Geobacter and Cyanobacteria as important functional components of the N2-fixing community depending on depth and agricultural use of soil[J]. Microbiology Open, 2017, 6(5): e00502. doi: 10.1002/mbo3.502
    [11] SMITH C R, BLAIR P L, BOYD C, et al. Microbial community responses to soil tillage and crop rotation in a corn/soybean agroecosystem[J]. Ecology and Evolution, 2016, 6(22): 8075-8084. doi: 10.1002/ece3.2553
    [12] GUO L, ZHENG S, CAO C, et al. Tillage practices and straw-returning methods affect topsoil bacterial community and organic C under a rice-wheat cropping system in central China[J]. Scientific Reports, 2016, 6: 33155. doi: 10.1038/srep33155
    [13] HABIG J, SWANEPOEL C. Effects of conservation agriculture and fertilization on soil microbial diversity and activity[J]. Environments, 2015, 2(4): 358-384. doi: 10.3390/environments2030358
    [14] VINK S N, CHRYSARGYRIS A, TZORTZAKIS N, et al. Bacterial community dynamics varies with soil management and irrigation practices in grapevines(Vitis vinifera L. )[J]. Applied Soil Ecology, 2021, 158: 103807. doi: 10.1016/j.apsoil.2020.103807
    [15] HSU S F, BUCKLEY D H. Evidence for the functional significance of diazotroph community structure in soil[J]. The ISME Journal, 2009, 3(1): 124-136. doi: 10.1038/ismej.2008.82
    [16] MIKANOVA O, JAVUREK M, SIMON T, et al. The effect of tillage systems on some microbial characteristics[J]. Soil and Tillage Research, 2009, 105(1): 72-76. doi: 10.1016/j.still.2009.05.010
    [17] MENG H, ZHOU Z C, WU R N, et al. Diazotrophic microbial community and abundance in acidic subtropical natural and re-vegetated forest soils revealed by high-throughput sequencing of nifH gene[J]. Applied Microbiology and Biotechnology, 2019, 103(2): 995-1005. doi: 10.1007/s00253-018-9466-7
    [18] NAVARRO-NOYA Y E, GOMEZ-ACATA S, MONTOYA-CIRIACO N, et al. Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem[J]. Soil Biology and Biochemistry, 2013, 65: 86-95. doi: 10.1016/j.soilbio.2013.05.009
    [19] 赵有翼, 蔡立群, 王静, 等. 不同保护性耕作措施对三种土壤微生物氮素类群数量及其分布的影响[J]. 草业学报, 2009, 18(4): 125-130. doi: 10.3321/j.issn:1004-5759.2009.04.018

    ZHAO Y Y, CAI L Q, WANG J, et al. Effects of different conservation tillage on amount and distribution of soil ammonifying bacteria, Nitrobacteria and nitrogen-fixing bacteria[J]. Acta Prataculturae Sinica, 2009, 18(4): 125-130. doi: 10.3321/j.issn:1004-5759.2009.04.018
    [20] BABUJIA L C, HUNGRIA M, FRANCHINI J C, et al. Microbial biomass and activity at various soil depths in a Brazilianoxisol after two decades of no-tillage and conventional tillage[J]. Soil Biology and Biochemistry, 2010, 42(12): 2174-2181. doi: 10.1016/j.soilbio.2010.08.013
    [21] LIN Y X, YE G P, LIU D Y, et al. Long-term application of lime or pig manure rather than plant residues suppressed diazotroph abundance and diversity and altered community structure in an acidic Ultisol[J]. Soil Biology and Biochemistry, 2018, 123: 218-228. doi: 10.1016/j.soilbio.2018.05.018
    [22] ORR C H, JAMES A, LEIFERT C, et al. Diversity and activity of free-living nitrogen-fixing bacteria and total bacteria in organic and conventionally managed soils[J]. Applied and Environmental Microbiology, 2011, 77(3): 911-919. doi: 10.1128/AEM.01250-10
    [23] YU Z H, LI Y S, WANG G H, et al. Elevated CO2 alters the abundance but not the structure of diazotrophic community in the rhizosphere of soybean grown in a Mollisol[J]. Biology and Fertility of Soils, 2018, 54(7): 877-881. doi: 10.1007/s00374-018-1311-8
    [24] NELSON D W, SOMMERS L E. Total carbon, organic carbon, and organic matter[M]//PAGE A L, MILLER R H, KEENEY D R. Methods of soil analysis, Part 2-Chemical and microbiological properties. Madison: ASA/SSSA, 1982: 539-594.
    [25] BREMNER J M. Nitrogen-total[M]//BARTELS J M, BIGHAM J M. Methods of soil analysis: Part 3 Chemical methods. Madison: ASA/SSSA, 1996: 1085-1121.
    [26] PARKINSON J A, ALLEN S E. A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material[J]. Communications in Soil Science Plant Analysis, 2008, 6: 1-11.
    [27] RÖSCH C, MERGEL A, BOTHE H. Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil[J]. Applied and Environmental Microbiology, 2002, 68(8): 3818-3829. doi: 10.1128/AEM.68.8.3818-3829.2002
    [28] WAKELIN S A, COLLOFF M J, HARVEY P R, et al. The effects of stubble retention and nitrogen application on soil microbial community structure and functional gene abundance under irrigated maize[J]. FEMS Microbiology Ecology, 2007, 59(3): 661-670. doi: 10.1111/j.1574-6941.2006.00235.x
    [29] YEAGER C M, NORTHUP D E, GROW CC, et al. Changes in nitrogen-fixing and ammonia-oxidizing bacterial communities in soil of a mixed conifer forest after wildfire[J]. Applied and Environmental Microbiology, 2005, 71(5): 2713-2722. doi: 10.1128/AEM.71.5.2713-2722.2005
    [30] ROPER M M, MARSCHKE G W, SMITH N A. Nitrogenase activity (C2H2 reduction) in soils following wheat straw retention: effects of straw management[J]. Australian Journal of Agricultural Research, 1989, 40(2): 241. doi: 10.1071/AR9890241
    [31] LIMMER C, DRAKE H L. Non-symbiotic N2-fixation in acidic and pH-neutral forest soils: aerobic and anaerobic differentials[J]. Soil Biology and Biochemistry, 1996, 28(2): 177-183. doi: 10.1016/0038-0717(95)00118-2
    [32] KONDO M, YASUDA M. Effects of temperature, water regime, light, and soil properties on 15N2 fixation associated with decomposition of organic matter in paddy soils[J]. Japan Agricultural Research Quarterly, 2003, 37(2): 113-119. doi: 10.6090/jarq.37.113
    [33] ROPER M M. Field measurements of nitrogenase activity in soils amended with wheat straw[J]. Australian Journal of Agricultural Research, 1983, 34(6): 725. doi: 10.1071/AR9830725
    [34] BOTHE H, MERGEL A, ROSCH C. Diversity of dinitrogen fixing and denitrifying bacteria in soils assessed by molecular biological methods[M]//Nitrogen fixation: global perspectives. Proceedings of the 13th International Congress on Nitrogen Fixation, Hamilton, Ontario, Canada, 2-7 July 2001. Wallingford: CABI, 2002: 305-308.
    [35] MERGEL A, KLOOS K, BOTHE H. Seasonal fluctuations in the population of denitrifying and N2-fixing bacteria in an acid soil of a Norway spruce forest[J]. Plant and Soil, 2001, 230(1): 145-160. doi: 10.1023/A:1004826116981
    [36] AZAM F, MAHMOOD T, MALIK K A. Inmobilization-remineralization of NO3-N and total N balance during the decomposition of glucose, sucrose and cellulose in soil incubated at different moisture regimes[J]. Plant and Soil, 1988, 107(2): 159-163. doi: 10.1007/BF02370542
    [37] XU Y D, ZHANG W, ZHONG Z K, et al. Vegetation restoration alters the diversity and community composition of soil nitrogen-fixing microorganisms in the loess hilly region of China[J]. Soil Science Society of America Journal, 2019, 83(5): 1378-1386. doi: 10.2136/sssaj2019.03.0066
    [38] HUHE, BORJIGIN S, CHENG Y X, et al. Effect of abandonment on diversity and abundance of free-living nitrogen-fixing bacteria and total bacteria in the cropland soils of Hulun Buir, Inner Mongolia[J]. PLoS One, 2014, 9(9): e106714. doi: 10.1371/journal.pone.0106714
    [39] BILLINGS S A, SCHAEFFER S M, EVANS R D. Nitrogen fixation by biological soil crusts and heterotrophic bacteria in an intact Mojave Desert ecosystem with elevated CO2 and added soil carbon[J]. Soil Biology and Biochemistry, 2003, 35(5): 643-649. doi: 10.1016/S0038-0717(03)00011-7
    [40] BURGMANN H, MEIER S, BUNGE M, et al. Effects of model root exudates on structure and activity of a soil diazotroph community[J]. Environmental Microbiology, 2005, 7(11): 1711-1724. doi: 10.1111/j.1462-2920.2005.00818.x
    [41] KEELINGA A, COOK J A, WILCOX A. Effects of carbohydrate application on diazotroph populations and nitrogen availability in grass swards established in garden waste compost[J]. Bioresource Technology, 1998, 66(2): 89-97. doi: 10.1016/S0960-8524(98)00055-8
    [42] ROPER M M, SMITH N A. Straw decomposition and nitrogenase activity(C2H2 reduction)by free-living microorganisms from soil: effects of pH and clay content[J]. Soil Biology and Biochemistry, 1991, 23(3): 275-283. doi: 10.1016/0038-0717(91)90064-Q
    [43] ARAUJO A, LEITE L, SANTOS V, et al. Soil microbial activity in conventional and organic agricultural systems[J]. Sustainability, 2009, 1(2): 268-276. doi: 10.3390/su1020268
    [44] TORBERT H A, WOOD C W. Effects of soil compaction and water-filled pore space on soil microbial activity and N losses[J]. Communications in Soil Science and Plant Analysis, 1992, 23(11/12): 1321-1331.
    [45] LI C H, MA B L, ZHANG T Q. Soil bulk density effects on soil microbial populations and enzyme activities during the growth of maize(Zea mays L. )planted in large pots under field exposure[J]. Canadian Journal of Soil Science, 2002, 82(2): 147-154. doi: 10.4141/S01-026
    [46] SMELTZER D L K, BERGDAHL D R, DONNELLY J R. Forest ecosystem responses to artificially induced soil compaction. Ⅱ. Selected soil microorganism populations[J]. Canadian Journal of Forest Research, 1986, 16(4): 870-872. doi: 10.1139/x86-154
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  287
  • HTML全文浏览量:  80
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-26
  • 修回日期:  2022-02-04
  • 网络出版日期:  2022-08-26

目录

    /

    返回文章
    返回