留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长期大气CO2浓度和温度升高对玉米生物量及根际磷组分的影响

郭丽丽 房蕊 李彦生 于镇华 王光华 刘晓冰 刘俊杰 刘居东 金剑

郭丽丽, 房蕊, 李彦生, 于镇华, 王光华, 刘晓冰, 刘俊杰, 刘居东, 金剑. 长期大气CO2浓度和温度升高对玉米生物量及根际磷组分的影响[J]. 土壤与作物, 2022, 11(3): 248-260. doi: 10.11689/j.issn.2095-2961.2022.03.002
引用本文: 郭丽丽, 房蕊, 李彦生, 于镇华, 王光华, 刘晓冰, 刘俊杰, 刘居东, 金剑. 长期大气CO2浓度和温度升高对玉米生物量及根际磷组分的影响[J]. 土壤与作物, 2022, 11(3): 248-260. doi: 10.11689/j.issn.2095-2961.2022.03.002
GUO Lili, FANG Rui, LI Yansheng, YU Zhenhua, WANG Guanghua, LIU Xiaobing, LIU Junjie, LIU Judong, JIN Jian. Long-term effect of atmospheric CO2 concentration and temperature co-elevation on maize biomass and the phosphorus fraction in the rhizosphere of maize[J]. Soils and Crops, 2022, 11(3): 248-260. doi: 10.11689/j.issn.2095-2961.2022.03.002
Citation: GUO Lili, FANG Rui, LI Yansheng, YU Zhenhua, WANG Guanghua, LIU Xiaobing, LIU Junjie, LIU Judong, JIN Jian. Long-term effect of atmospheric CO2 concentration and temperature co-elevation on maize biomass and the phosphorus fraction in the rhizosphere of maize[J]. Soils and Crops, 2022, 11(3): 248-260. doi: 10.11689/j.issn.2095-2961.2022.03.002

长期大气CO2浓度和温度升高对玉米生物量及根际磷组分的影响

doi: 10.11689/j.issn.2095-2961.2022.03.002
基金项目: 

黑龙江省自然科学重点项目 ZD2021D001

国家重点研发计划项目 2017YFD0300300

详细信息
    作者简介:

    郭丽丽(1991-),女,博士,研究方向为气候变化对作物磷吸收及土壤磷转化的影响.E-mail: guolili18@mails.ucas.ac.cn

    通讯作者:

    金剑(1974-),男,研究员,主要从事植物-土壤互作方面的研究.E-mail: jinjian@iga.ac.cn

  • 中图分类号: S513

Long-term effect of atmospheric CO2 concentration and temperature co-elevation on maize biomass and the phosphorus fraction in the rhizosphere of maize

  • 摘要:

    在农业系统中,作物通过刺激根系生长和调节根际生化特征从土壤中获取更多磷(P)以满足产量增长需求,根际有效磷的吸收势必影响土壤磷转化。然而,长期大气CO2浓度和温度升高对作物生长、土壤磷组分以及相关微生物机制的影响鲜有研究。本研究利用开顶式生长室(OTC)重点探究了气候变化对黑土区玉米根际土壤磷组分和相关磷转化微生物功能基因的影响。结果表明,连续4年CO2浓度和温度升高使玉米生物量增加10%~40%,磷吸收增加20%~80%。另外,大气CO2浓度和温度升高使玉米根际NaHCO3可提取无机磷(NaHCO3-Pi)下降了24%,而NaHCO3可提取有机磷(NaHCO3-Po)增加了22%。然而,大气CO2浓度、温度以及两者同时升高使NaOH可提取有机磷(NaOH-Po)分别降低了27%、74%和20%。大气CO2浓度和温度同时升高显著增加了酸性磷酸酶活性(P < 0.05),并且玉米根际磷酸酶活性与NaOH-Po呈负相关关系。大气CO2浓度和温度同时升高增加了根际土壤phoC(酸性磷酸酶合成基因)、phoD(碱性磷酸酶合成基因)和pstS(磷转运因子)基因拷贝数。长期大气CO2浓度和温度升高能够促进玉米生长,并通过刺激根际微生物磷矿化基因丰度和相关酶活性影响土壤磷组分,气候变化可能改变根际磷转化的微生物生态功能,进而影响黑土磷循环。

     

  • 图  1  2018-2021年模拟CO2浓度和温度升高对玉米生物量的影响

    注:Control: 大气CO2浓度+环境温度;eCO2:高CO2浓度处理;Warming: 升温处理;eCO2+warming: CO2浓度和温度同时升高处理。不同小写字母表示处理间差异显著(P<0.05)。下同。

    Figure  1.  Effects of elevated CO2 and temperature simulation on maize biomass during 2018-2021

    Note: Control: atmosphere CO2+environment temperature; eCO2: elevated CO2 treatment; Warming: elevated temperature treatment; eCO2+warming: elevated CO2 and temperature co-elevation treatment.Different lower case letters indicate significant differences between treatments at P < 0.05.The same is as below.

    图  2  2018-2021年模拟大气CO2浓度和温度升高对玉米磷浓度和磷吸收的影响

    Figure  2.  Effects of elevated CO2 and temperature simulation on plant phosphorus concentration and phosphorus content of maize during 2018-2021

    图  3  模拟大气CO2浓度和温度升高对玉米根际磷组分的影响(2021年)

    Figure  3.  Effects of elevated CO2 and temperature simulation on phosphorus fractions in the rhizosphere of maize(2021)

    图  4  模拟CO2浓度和温度升高对大豆和玉米根际磷酸酶活性的影响(2021年)

    Figure  4.  Effects of elevated CO2 and temperature simulation on phosphatase activity in the rhizosphere of maize (2021)

    图  5  玉米根际磷酸酶活性与有机磷组分(NaHCO3-Po and NaOH-Po)的关系(2021年)

    Figure  5.  Relationships between the phosphatase activity and organic phosphorus fractions (NaHCO3-Po and NaOH-Po) in the rhizosphere of maize (2021)

    图  6  模拟大气CO2浓度和温度升高对玉米根际phoDphoCpstSphnX基因拷贝数的影响(2021年)

    Figure  6.  Effects of elevated CO2 and temperature simulation on copy number of phoD, phoC, pstS and phnX genes in the rhizosphere of maize (2021)

    图  7  玉米根际土中磷转化和功能基因的相关参数主成分分析(2021年)

    Figure  7.  The principal component analysis on measured variables, i.e.phosphorus fractions and abundance of phosphorus functional genes (2021)

    表  1  黑土基础理化性质和磷组分

    Table  1.   Basic physicochemical properties and phosphorus fractions of Mollisols

    土壤类型
    Soil type
    全碳Total carbon/(g·kg-1) 全氮Total nitrogen/(g·kg-1) NaHCO3-Pi/(mg·kg-1) NaHCO3-Po/(mg·kg-1) NaOH-Pi/(mg·kg-1) NaOH-Po/(mg·kg-1) HCl-P/(mg·kg-1) Residue-P/(mg·kg-1) pH
    黑土
    Mollisols
    12.7 1.4 107.7 178.1 111.2 128.9 139.0 281.7 5.4
    下载: 导出CSV

    表  2  磷转化相关功能微生物引物序列

    Table  2.   Nucleotide sequences of developed primers for real-time qPCR

    目的基因
    Target gene
    引物
    Primer
    序列
    Sequence(5′-3′)
    参考文献
    Reference
    碱性磷酸酶合成基因
    Alkaline phosphatase(phoD)
    phoD-FW TGTTCCACCTGGGCGAYWMIATHTAYG [35]
    phoD-RW CGTTCGCGACCTCGTGRTCRTCCCA
    酸性磷酸酶合成基因
    Acid phosphatase(phoC)
    phoC-FW CGGCTCCTATCCGTCCGG [36]
    phoC-RW CAACATCGCTTTGCCAGTG
    磷酸乙醛水解酶合成基因
    Phosphonoacetaldehyde hydrolase(phnX)
    phnX-FW CGTGATCTTCGACtGGGCNGGNAC [35]
    phnX-RW GTGGTCCCACTTCCCCADICCCATNGG
    磷转运因子合成基因
    Phosphate-specific transporter(pstS)
    pstS-FW TCTACCTGGGGAAGATCACAAARTGGRAYGA [35]
    pstS-RW TGCCGACGGGCCAITYNWC
    下载: 导出CSV
  • [1] 杨金艳, 杨万勤, 王开运, 等. 木本植物对CO2浓度和温度升高的相互作用的响应[J]. 植物生态学报, 2003, 27(3): 304-310. doi: 10.3321/j.issn:1005-264X.2003.03.004

    YANG J Y, YANG W Q, WANG K Y, et al. Woody plants respond to interactions between elevated CO2 and increased temperature[J]. Acta Phytoecologica Sinica, 2003, 27(3): 304-310. doi: 10.3321/j.issn:1005-264X.2003.03.004
    [2] FANG R, LI Y S, YU Z H, et al. Warming and elevated CO2 interactively affect the photosynthetic carbon of maize plant retained in major farming soils[J]. Archives of Agronomy and Soil Science, 2021, 67(4): 474-486. doi: 10.1080/03650340.2020.1735630
    [3] SAGE R F, MONSON R K. C4 Plant Biology[M]. Amsterdam: Elsevier Press, 1999: 87.
    [4] 李彦生, 金剑, 刘晓冰. 作物对大气CO2浓度升高生理响应研究进展[J]. 作物学报, 2020, 46(12): 1819-1830. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW202012002.htm

    LI Y S, JIN J, LIU X B. Physiological response of crop to elevated atmospheric carbon dioxide concentration: a review[J]. Acta Agronomica Sinica, 2020, 46(12): 1819-1830. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW202012002.htm
    [5] MORGAN J A, LECAIN D R, READ J J, et al. Photosynthetic pathway and ontogeny affect water relations and the impact of CO2 on Bouteloua gracilis (C4) and Pascopyrum smithii (C3)[J]. Oecologia, 1998, 114(4): 483-493. doi: 10.1007/s004420050472
    [6] SENEWEERA S P, GHANNOUM O, CONROY J. Highvapour pressure deficit and low soil water availability enhance shoot growth responses of a C4 grass (Panicum coloratum cv. Bambatsi) to CO2 enrichment[J]. Functional Plant Biology, 1998, 25(3): 287. doi: 10.1071/PP97054
    [7] 居煇, 许吟隆, 熊伟. 气候变化对我国农业的影响[J]. 环境保护, 2007, 35(11): 71-73. doi: 10.3969/j.issn.0253-9705.2007.11.018

    JU H, XU Y L, XIONG W. The effect of climate change on Chinese agriculture[J]. Environmental Protection, 2007, 35(11): 71-73. doi: 10.3969/j.issn.0253-9705.2007.11.018
    [8] 杨敏慎, 刘晓雨, 郭辉. 气候变暖和CO2浓度升高对农作物的影响[J]. 江苏农业学报, 2021, 37(1): 246-258. doi: 10.3969/j.issn.1000-4440.2021.01.032

    YANG M S, LIU X Y, GUO H. Effects of climate warming and elevated CO2 concentration on crops[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(1): 246-258. doi: 10.3969/j.issn.1000-4440.2021.01.032
    [9] ABEBE A, PATHAK H, SINGH S D, et al. Growth, yield and quality of maize with elevated atmospheric carbon dioxide and temperature in north-west India[J]. Agriculture, Ecosystems and Environment, 2016, 218: 66-72. doi: 10.1016/j.agee.2015.11.014
    [10] JIN J, KROHN C, FRANKS A E, et al. Elevated atmospheric CO2 alters the microbial community composition and metabolic potential to mineralize organic phosphorus in the rhizosphere of wheat[J]. Microbiome, 2022, 10(1): 12. doi: 10.1186/s40168-021-01203-w
    [11] 张春雨, 李彦生, 于镇华, 等. 大气CO2浓度和温度升高影响作物产量的光合生理及分子生物学机制[J]. 土壤与作物, 2021, 10(3): 256-265. https://www.cnki.com.cn/Article/CJFDTOTAL-TRZW202103002.htm

    ZHANG C Y, LI Y S, YU Z H, et al. Mechanism of photosynthetic physiology and molecular biology of crop yield as affected by elevated atmospheric CO2 concentration and temperature-A review[J]. Soils and Crops, 2021, 10(3): 256-265. https://www.cnki.com.cn/Article/CJFDTOTAL-TRZW202103002.htm
    [12] XIE X J, LI R Y, ZHANG Y H, et al. Effect of elevated[CO2]on assimilation, allocation of nitrogen and phosphorus by maize (Zea mays L. )[J]. Communications in Soil Science and Plant Analysis, 2018, 49(9): 1032-1044. doi: 10.1080/00103624.2018.1448413
    [13] BHATTACHARYYA P, ROY K S, DASH P K, et al. Effect of elevated carbon dioxide and temperature on phosphorus uptake in tropical flooded rice (Oryza sativa L. )[J]. European Journal of Agronomy, 2014, 53: 28-37. doi: 10.1016/j.eja.2013.10.008
    [14] WANG J Q, LI L Q, LAM S K, et al. Changes in nutrient uptake and utilization by rice under simulated climate change conditions: a 2-year experiment in a paddy field[J]. Agricultural and Forest Meteorology, 2018, 250/251: 202-208. doi: 10.1016/j.agrformet.2017.12.254
    [15] 孙桂芳, 金继运, 石元亮. 土壤磷素形态及其生物有效性研究进展[J]. 中国土壤与肥料, 2011(2): 1-9. doi: 10.3969/j.issn.1673-6257.2011.02.001

    SUN G F, JIN J Y, SHI Y L. Research advance on soil phosphorous forms and their availability to crops in soil[J]. Soil and Fertilizer Sciences in China, 2011(2): 1-9. doi: 10.3969/j.issn.1673-6257.2011.02.001
    [16] DRAKE B G, GONZALEZ-MELER M A, LONG S P. MORE EFFICIENT PLANTS: a consequence of rising atmospheric CO2?[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 609-639. doi: 10.1146/annurev.arplant.48.1.609
    [17] JIN J, ARMSTRONG R, TANG C X. Long-term impact of elevated CO2 on phosphorus fractions varies in three contrasting cropping soils[J]. Plant and Soil, 2017, 419(1/2): 257-267.
    [18] 王秋兰, 靳鲲鹏, 曹晋军. 大气CO2浓度升高对玉米叶片光合生理指标及其产量的影响[J]. 山西农业科学, 2018, 46(12): 2051-2053+2061. doi: 10.3969/j.issn.1002-2481.2018.12.21

    WANG Q L, JIN K P, CAO J J. Effects of atmospheric CO2 concentration enhancement on photosynthetic physiological indexes and yield of maize leaves[J]. Journal of Shanxi Agricultural Sciences, 2018, 46(12): 2051-2053+2061. doi: 10.3969/j.issn.1002-2481.2018.12.21
    [19] 孟凡超, 张佳华, 郝翠, 等. CO2浓度升高和不同灌溉量对东北玉米光合特性及产量的影响[J]. 生态学报, 2015, 35(7): 2126-2135. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201507011.htm

    MENG F C, ZHANG J H, HAO C, et al. Effects of elevated CO2 and different irrigation on photosynthetic parameters and yield of maize in Northeast China[J]. Acta Ecologica Sinica, 2015, 35(7): 2126-2135. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201507011.htm
    [20] NAM H S, KWAK J H, LIM S S, et al. Fertilizer N uptake of paddy rice in two soils with different fertility under experimental warming with elevated CO2[J]. Plant and Soil, 2013, 369(1/2): 563-575.
    [21] CAI C, YIN X Y, HE S Q, et al. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments[J]. Global Change Biology, 2016, 22(2): 856-874. doi: 10.1111/gcb.13065
    [22] 郭佳, 张宝林, 高聚林, 等. 气候变化对中国农业气候资源及农业生产影响的研究进展[J]. 北方农业学报, 2019, 47(1): 105-113. doi: 10.3969/j.issn.2096-1197.2019.01.18

    GUO J, ZHANG B L, GAO J L, et al. Advances on the impacts of climate change onagro-climatic resources and agricultural production in China[J]. Journal of Northern Agriculture, 2019, 47(1): 105-113. doi: 10.3969/j.issn.2096-1197.2019.01.18
    [23] 凌霄霞, 张作林, 翟景秋, 等. 气候变化对中国水稻生产的影响研究进展[J]. 作物学报, 2019, 45(3): 323-334. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201903002.htm

    LING X X, ZHANG Z L, ZHAI J Q, et al. A review for impacts of climate change on rice production in China[J]. Acta Agronomica Sinica, 2019, 45(3): 323-334. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201903002.htm
    [24] 陈金, 田云录, 董文军, 等. 东北水稻生长发育和产量对夜间升温的响应[J]. 中国水稻科学, 2013, 27(1): 84-90. doi: 10.3969/j.issn.1001-7216.2013.01.012

    CHEN J, TIAN Y L, DONG W J, et al. Responses of rice growth and grain yield tonighttime warming in northeast China[J]. Chinese Journal of Rice Science, 2013, 27(1): 84-90. doi: 10.3969/j.issn.1001-7216.2013.01.012
    [25] 张磊, 都钧, 孔丽丽, 等. 施磷对东北黑土区春玉米产量、磷素吸收利用及土壤磷素平衡的影响[J]. 东北农业科学, 2020, 45(5): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-JLNK202005010.htm

    ZHANG L, DU J, KONG L L, et al. Effects of phosphorus fertilizer application on yield, phosphorus absorption and utilization, soil phosphorus balance of spring maize in black soil region of northeast China[J]. Journal of Northeast Agricultural Sciences, 2020, 45(5): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-JLNK202005010.htm
    [26] 朱向明, 韩秉进. 不同供磷水平下苗期大豆根系形态特征及吸水特性[J]. 土壤与作物, 2014, 3(3): 112-116. https://www.cnki.com.cn/Article/CJFDTOTAL-TRZW201403005.htm

    ZHU X M, HAN B J. Root morphology and root-water-uptake characteristics of soybean seedlings in response to different levels of phosphorus supply[J]. Soils and Crops, 2014, 3(3): 112-116. https://www.cnki.com.cn/Article/CJFDTOTAL-TRZW201403005.htm
    [27] JIN J, TANG C X, SALE P. The impact of elevated carbon dioxide on the phosphorus nutrition of plants: a review[J]. Annals of Botany, 2015, 116(6): 987-999. doi: 10.1093/aob/mcv088
    [28] 黄岩, 曹国军, 耿玉辉, 等. 降水量与施磷量对黑土区玉米产量及磷素吸收利用的影响[J]. 玉米科学, 2018, 26(1): 142-148. https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201801022.htm

    HUANG Y, CAO G J, GENG Y H, et al. Effects of precipitation and phosphorus application rate on yield and phosphorus absorption and utilization of maize in black soil region[J]. Journal of Maize Sciences, 2018, 26(1): 142-148. https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201801022.htm
    [29] 王秀娟, 解占军, 何志刚, 等. 秸秆还田条件下减量施磷对玉米产量、磷素利用率及土壤磷含量的影响[J]. 河南农业科学, 2018, 47(8): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-HNNY201808009.htm

    WANG X J, XIE Z J, HE Z G, et al. Effects of reducing phosphorus application on maize yield, phosphorus use efficiency and soil phosphorus content under straw returning condition[J]. Journal of Henan Agricultural Sciences, 2018, 47(8): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-HNNY201808009.htm
    [30] 侯云鹏, 王立春, 李前, 等. 覆膜滴灌条件下基于玉米产量和土壤磷素平衡的磷肥适用量研究[J]. 中国农业科学, 2019, 52(20): 3573-3584. doi: 10.3864/j.issn.0578-1752.2019.20.008

    HOU Y P, WANG L C, LI Q, et al. Research on optimum phosphorus fertilizer rate based on maize yield and phosphorus balance in soil under film mulched drip irrigation conditions[J]. Scientia Agricultura Sinica, 2019, 52(20): 3573-3584. doi: 10.3864/j.issn.0578-1752.2019.20.008
    [31] 姜勇, 庄秋丽, 张玉革, 等. 东北玉米带农田土壤磷素分布特征[J]. 应用生态学报, 2008, 19(9): 1931-1936. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200809012.htm

    JIANG Y, ZHUANG Q L, ZHANG Y G, et al. Distribution characteristics of soil phosphorus in maize belt farmlands of Northeast China[J]. Chinese Journal of Applied Ecology, 2008, 19(9): 1931-1936. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200809012.htm
    [32] GUPPY C N, MEMZIES N W, MOODY P W, et al. A simplified, sequential, phosphorus fractionation method[J]. Communication in Soil Science and Plant Analysis, 2000, 31: 1981-1991. doi: 10.1080/00103620009370556
    [33] JIN J, TANG C X, ARMSTRONG R, et al. Phosphorus supply enhances the response of legumes to elevated CO2 (FACE) in a phosphorus-deficient vertisol[J]. Plant and Soil, 2012, 358(1/2): 91-104.
    [34] RAZAVI B S, BLAGODATSKAYA E, KUZYAKOV Y. Nonlinear temperature sensitivity of enzyme kinetics explains canceling effect-a case study on loamyhaplic Luvisol[J]. Frontiers in Microbiology, 2015, 6: 1126.
    [35] BERGKEMPER F, KUBLIK S, LANG F, et al. Novel oligonucleotide primers reveal a high diversity of microbes which drive phosphorous turnover in soil[J]. Journal of Microbiological Methods, 2016, 125: 91-97. doi: 10.1016/j.mimet.2016.04.011
    [36] FRASER T D, LYNCH D H, GAIERO J, et al. Quantification of bacterial non-specific acid (phoC) and alkaline (phoD) phosphatase genes in bulk and rhizosphere soil from organically managed soybean fields[J]. Applied Soil Ecology, 2017, 111: 48-56. doi: 10.1016/j.apsoil.2016.11.013
    [37] XIE Z H, YU Z H, LI Y S, et al. Linking rhizospheric diazotrophs to the stimulation of soybean N2 fixation in a Mollisol amended with maize straw[J]. Plant and Soil, 2021, 463(1/2): 279-289.
    [38] 苏营, 张逸飞, 牟文雅, 等. 大豆主要株型和产量指标对大气CO2和温度升高的响应[J]. 生态学报, 2016, 36(9): 2597-2606. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201609019.htm

    SU Y, ZHANG Y F, MOU W Y, et al. Morphological traits and yield of soybean under elevated atmospheric CO2 concentration and temperature[J]. Acta Ecologica Sinica, 2016, 36(9): 2597-2606. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201609019.htm
    [39] NAVEED S, ASLAM M, MAQBOOL M A, et al. Physiology of high temperature stress tolerance at reproductive stages in maize[J]. Journal of Animal and Plant Sciences, 2014, 24(4): 1141-1145.
    [40] BASSU S, BRISSON N, DURAND J L, et al. How do various maize crop models vary in their responses to climate change factors?[J]. Global Change Biology, 2014, 20(7): 2301-2320. doi: 10.1111/gcb.12520
    [41] MA H L, ZHU J G, LIU G, et al. Availability of soil nitrogen and phosphorus in a typical rice-wheat rotation system under elevated atmospheric CO2[J]. Field Crops Research, 2007, 100(1): 44-51. doi: 10.1016/j.fcr.2006.05.005
    [42] SINGH S K, REDDY V R, FLEISHER D H, et al. Growth, nutrient dynamics, and efficiency responses to carbon dioxide and phosphorus nutrition in soybean[J]. Journal of Plant Interactions, 2014, 9(1): 838-849. doi: 10.1080/17429145.2014.959570
    [43] LI P, HAN X, ZONG Y Z, et al. Effects of free-air CO2 enrichment (FACE) on the uptake and utilization of N, P and K in Vigna radiata[J]. Agriculture, Ecosystems and Environment, 2015, 202: 120-125. doi: 10.1016/j.agee.2015.01.004
    [44] JAUREGUI I, AROCA R, GARNICA M, et al. Nitrogen assimilation and transpiration: key processes conditioning responsiveness of wheat to elevated[CO2] and temperature[J]. Physiologia Plantarum, 2015, 155(3): 338-354. doi: 10.1111/ppl.12345
    [45] AHMED W, HUANG J, KAILLOU L, et al. Changes in phosphorus fractions associated with soil chemical properties under long-term organic and inorganic fertilization in paddy soils of Southern China[J]. PLoS One, 2019, 14(5): e0216881. doi: 10.1371/journal.pone.0216881
    [46] MANOJ-KUMAR S A, PATRA A K, PURAKAYASTHA T J, et al. Elevated CO2 and temperature effects on phosphorus dynamics in rhizosphere of wheat(Triticum aestivum L. ) grown in a typic haplustept of subtropical India[J]. Agrochimica, 2011, 6: 314-331.
    [47] 吴璐璐. 基于Hedley法对我国北方典型土壤磷素形态的研究[D]. 杨凌: 西北农林科技大学, 2021.

    WU L L. Research on the phosphorus forms of typical soils in Northern China based on the hedley method[D]. Yangling: Northwest A & F University, 2021.
    [48] O'SULLIVAN J B, JIN J, TANG C X. Elevated CO2 promotes the acquisition of phosphorus in crop species differing in physiological phosphorus-acquiring mechanisms[J]. Plant and Soil, 2020, 455(1/2): 397-408.
    [49] GEORGE T S, GREGORY P J, WOOD M, et al. Phosphatase activity and organic acids in the rhizosphere of potential agroforestry species and maize[J]. Soil Biology and Biochemistry, 2002, 34(10): 1487-1494. doi: 10.1016/S0038-0717(02)00093-7
    [50] DAI Z M, LIU G F, CHEN HH, et al. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems[J]. The ISME Journal, 2020, 14(3): 757-770. doi: 10.1038/s41396-019-0567-9
    [51] YANG C D, LU S G. Straw and strawbiochar differently affect phosphorus availability, enzyme activity and microbial functional genes in an Ultisol[J]. Science of the Total Environment, 2022, 805: 150325. doi: 10.1016/j.scitotenv.2021.150325
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  359
  • HTML全文浏览量:  89
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-14
  • 修回日期:  2022-04-18
  • 网络出版日期:  2022-08-26

目录

    /

    返回文章
    返回