留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

土壤有机质周转过程及其矿物和团聚体物理调控机制

张斌 张福韬 陈曦 王东睿

张斌, 张福韬, 陈曦, 王东睿. 土壤有机质周转过程及其矿物和团聚体物理调控机制[J]. 土壤与作物, 2022, 11(3): 235-247. doi: 10.11689/j.issn.2095-2961.2022.03.001
引用本文: 张斌, 张福韬, 陈曦, 王东睿. 土壤有机质周转过程及其矿物和团聚体物理调控机制[J]. 土壤与作物, 2022, 11(3): 235-247. doi: 10.11689/j.issn.2095-2961.2022.03.001
ZHANG Bin, ZHANG Futao, CHEN Xi, WANG Dongrui. Soil organic matter turnover and controlling mechanisms of mineralogy and aggregation: new insights[J]. Soils and Crops, 2022, 11(3): 235-247. doi: 10.11689/j.issn.2095-2961.2022.03.001
Citation: ZHANG Bin, ZHANG Futao, CHEN Xi, WANG Dongrui. Soil organic matter turnover and controlling mechanisms of mineralogy and aggregation: new insights[J]. Soils and Crops, 2022, 11(3): 235-247. doi: 10.11689/j.issn.2095-2961.2022.03.001

土壤有机质周转过程及其矿物和团聚体物理调控机制

doi: 10.11689/j.issn.2095-2961.2022.03.001
基金项目: 

国家自然科学基金重点基金项目 41930761

详细信息
    作者简介:

    张斌(1966-),男,博士,研究员,研究方向为土壤生物物理.E-mail: zhangbin01@caas.cn

  • 中图分类号: S152.4

Soil organic matter turnover and controlling mechanisms of mineralogy and aggregation: new insights

  • 摘要:

    土壤有机质是陆地最大的碳库,是保障土壤健康和粮食安全的基础资源,其微量变化就会对气候产生巨大的影响。全球气候变暖背景下,植被初级生产量的增加将导致输入土壤的植物凋落物和根际分泌物量增加。输入有机物驱动土壤有机质循环,其分解产物转化为新的土壤有机质,同时促进原土壤有机质分解,进而更新土壤肥力并反作用于气候变化,相关研究是土壤有机质研究的热点和重点,但是关于矿物和团聚体物理保护的研究较少。本文从生态系统角度综述了对土壤有机质周转中形成和分解过程的新认识,明确了土壤矿物和团聚体物理保护的重要性,并阐述了未来的研究方向。

     

  • 图  1  有机物输入驱动的土壤有机质循环过程及其调控机制

    Figure  1.  Soil organic matter cycle process driven by organic inputs and the mechanisms

    图  2  土壤有机质物理保护过程及矿物类型的调控作用

    注:图中的颜色区分土壤有机质的组成及来源。

    Figure  2.  Physical protection process of soil organic matter and the regulation of mineral types

    Note: The colours are used to distinguish the composition and origin of soil organic matter.

    图  3  PROCAAS模型模拟证明的团聚体形成过程对激发效应动态控制作用[120]

    注:PE1:微生物周转控制;PE2:大团聚体形成过程中的保护作用;PE3:大团聚体内小团聚体形成中的保护作用;PE4:团聚体稳定中的保护作用。

    Figure  3.  The regulation of aggregates formation process for the priming effect dynamic confirmed by PROCAAS modelling[120]

    Note: PE1:Microbial turnover control; PE2:The protective effect during the formation of macroaggregates; PE3:Protective effect during the formation of microaggregates in macroaggregates; PE4:Protective effects of aggregate stability.

  • [1] SMITH P, COTRUFO M E, RUMPEL C, et al. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils[J]. Soil, 2015, 1(2): 665-685. doi: 10.5194/soil-1-665-2015
    [2] KAY B D, DA SILVA A P, BALDOCK J A. Sensitivity of soil structure to changes in organic carbon content: predictions using pedotransfer functions[J]. Canadian Journal of Soil Science, 1997, 77(4): 655-667. doi: 10.4141/S96-094
    [3] LAL R. Beyond COP21: potential and challenges of the "4 per thousand" initiative[J]. Journal of Soil and Water Conservation, 2016, 71(1): 20A-25A. doi: 10.2489/jswc.71.1.20A
    [4] KOGEL-KNABNER I and RUMPEL C. Advances in molecular approaches for understanding soil organic matter composition, origin, and turnover: a historical overview[M]//KOGEL-KNABNER I, ed. Advances in Agronomy. California: Academic Press, 2018: 1-48.
    [5] SOLOMON D, FRITZSCHE F, TEKALIGN M, et al. Soil organic matter composition in the subhumid Ethiopian highlands as influenced by deforestation and agricultural management[J]. Soil Science Society of America Journal, 2002, 66(1): 68-82. doi: 10.2136/sssaj2002.6800
    [6] LEHMANN J, KLEBER M. The contentious nature of soil organic matter[J]. Nature, 2015, 528(7580): 60-68. doi: 10.1038/nature16069
    [7] BARRÉ P, FERNANDEZ-UGALDE O, VIRTO I, et al. Impact of phyllosilicate mineralogy on organic carbon stabilization in soils: incomplete knowledge and exciting prospects[J]. Geoderma, 2014, 235/236: 382-395. doi: 10.1016/j.geoderma.2014.07.029
    [8] CHMIDT M W I, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367): 49-56. doi: 10.1038/nature10386
    [9] DUNGAIT J A J, HOPKINS D W, GREGORY A S, et al. Soil organic matter turnover is governed by accessibility not recalcitrance[J]. Global Change Biology, 2012, 18(6): 1781-1796. doi: 10.1111/j.1365-2486.2012.02665.x
    [10] LIANG C, SCHIMEL J P, JASTROW J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2(8): 17105. doi: 10.1038/nmicrobiol.2017.105
    [11] KRULL E S, BALDOCK J A, SKJEMSTAD J O. Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover[J]. Functional Plant Biology, 2003, 30(2): 207-222. doi: 10.1071/FP02085
    [12] O'ROURKE S M, ANGERS D A, HOLDEN N M, et al. Soil organic carbon across scales[J]. Global Change Biology, 2015, 21(10): 3561-3574. doi: 10.1111/gcb.12959
    [13] RUMPEL C, LEHMANN J, CHABBI A. '4 per 1, 000' initiative will boost soil carbon for climate and food security[J]. Nature, 2018, 553(7686): 27-27.
    [14] SMITH D M, SCAIFE A A, HAWKINS E, et al. Predicted chance that global warming will temporarily exceed 1.5 ℃[J]. Geophysical Research Letters, 2018, 45(21): 11895-11903.
    [15] ABER J D, MELILLO J M, MCCLAUGHERTY C A. Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems[J]. Canadian Journal of Botany, 1990, 68(10): 2201-2208. doi: 10.1139/b90-287
    [16] PARSONS J W. Humus chemistry—genesis, composition, reactions[J]. Nature, 1983, 303(5920): 835-836.
    [17] PICCOLO A. The supramolecular structure of humic substances[J]. Soil Science, 2001, 166(11): 810-832. doi: 10.1097/00010694-200111000-00007
    [18] SOLLINS P, HOMANN P, CALDWELL B A. Stabilization and destabilization of soil organic matter: mechanisms and controls[J]. Geoderma, 1996, 74(1/2): 65-105.
    [19] KÖGEL-KNABNER I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter[J]. Soil Biology and Biochemistry, 2002, 34(2): 139-162. doi: 10.1016/S0038-0717(01)00158-4
    [20] COTRUFO M F, WALLENSTEIN M D, BOOT C M, et al. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?[J]. Global Change Biology, 2013, 19(4): 988-995. doi: 10.1111/gcb.12113
    [21] COTRUFO M F, SOONG J L, HORTON A J, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss[J]. Nature Geoscience, 2015, 8(10): 776-779. doi: 10.1038/ngeo2520
    [22] HADDIX M L, PAUL E A, COTRUFO M F. Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter[J]. Global Change Biology, 2016, 22(6): 2301-2312. doi: 10.1111/gcb.13237
    [23] KALLENBACH C M, FREY S D, GRANDY A S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls[J]. Nature Communications, 2016, 7: 13630. doi: 10.1038/ncomms13630
    [24] SOKOL N W, BRADFORD M A. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input[J]. Nature Geoscience, 2019, 12(1): 46-53. doi: 10.1038/s41561-018-0258-6
    [25] TISDALL J M, OADES J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 33(2): 141-163. doi: 10.1111/j.1365-2389.1982.tb01755.x
    [26] OADES J M. Soil organic matter and structural stability: mechanisms and implications for management[J]. Plant and Soil, 1984, 76(1/2/3): 319-337.
    [27] PUGET P, CHENU C, BALESDENT J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates[J]. European Journal of Soil Science, 2000, 51(4): 595-605. doi: 10.1111/j.1365-2389.2000.00353.x
    [28] SIX J, BOSSUYT H, DEGRYZE S, et al. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 2004, 79(1): 7-31. doi: 10.1016/j.still.2004.03.008
    [29] OADES J M, WATERS A G. Aggregate hierarchy in soils[J]. Soil Research, 1991, 29(6): 815. doi: 10.1071/SR9910815
    [30] SIX J, PAUSTIAN K, ELLIOTT E T, et al. Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon[J]. Soil Science Society of America Journal, 2000, 64(2): 681-689. doi: 10.2136/sssaj2000.642681x
    [31] BALABANE M, PLANTE A F. Aggregation and carbon storage in silty soil using physical fractionation techniques[J]. European Journal of Soil Science, 2004, 55(2): 415-427. doi: 10.1111/j.1351-0754.2004.0608.x
    [32] VIRTO I, MONI C, SWANSTON C, et al. Turnover of intra- and extra-aggregate organic matter at the silt-size scale[J]. Geoderma, 2010, 156(1/2): 1-10.
    [33] CAO X Y, OLK D C, CHAPPELL M, et al. Solid-state NMR analysis of soil organic matter fractions from integrated physical-chemical extraction[J]. Soil Science Society of America Journal, 2011, 75(4): 1374-1384. doi: 10.2136/sssaj2010.0382
    [34] BRADFORD M A, CROWTHER T W. Carbon use efficiency and storage in terrestrial ecosystems[J]. The New Phytologist, 2013, 199(1): 7-9. doi: 10.1111/nph.12334
    [35] ANGST G, MUELLER K E, KÖGEL-KNABNER I, et al. Aggregation controls the stability of lignin and lipids in clay-sized particulate and mineral associated organic matter[J]. Biogeochemistry, 2017, 132(3): 307-324. doi: 10.1007/s10533-017-0304-2
    [36] ZHANG H J, DING W X, HE X H, et al. Influence of 20-year organic and inorganic fertilization on organic carbon accumulation and microbial community structure of aggregates in an intensively cultivated sandy loam soil[J]. PLoS One, 2014, 9(3): e92733. doi: 10.1371/journal.pone.0092733
    [37] PRONK G J, HEISTER K, KÖGEL-KNABNER I. Is turnover and development of organic matter controlled by mineral composition?[J]. Soil Biology and Biochemistry, 2013, 67: 235-244. doi: 10.1016/j.soilbio.2013.09.006
    [38] PRONK G J, HEISTER K, KÖGEL-KNABNER I. Amino sugars reflect microbial residues as affected by clay mineral composition of artificial soils[J]. Organic Geochemistry, 2015, 83/84: 109-113. doi: 10.1016/j.orggeochem.2015.03.007
    [39] XU Y Z, LIU K, YAO S H, et al. Formation efficiency of soil organic matter from plant litter is governed by clay mineral type more than plant litter quality[J]. Geoderma, 2022, 412: 115727. doi: 10.1016/j.geoderma.2022.115727
    [40] SHAHBAZ M, KUZYAKOV Y, SANAULLAH M, et al. Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: mechanisms and thresholds[J]. Biology and Fertility of Soils, 2017, 53(3): 287-301. doi: 10.1007/s00374-016-1174-9
    [41] LIANG X, YUAN J, YANG E, et al. Responses of soil organic carbon decomposition and microbial community to the addition of plant residues with different C: N ratio[J]. European Journal of Soil Biology, 2017, 82: 50-55. doi: 10.1016/j.ejsobi.2017.08.005
    [42] SOKOL N W, SANDERMAN J, BRADFORD M A. Pathways of mineral-associated soil organic matter formation: integrating the role of plant carbon source, chemistry, and point of entry[J]. Global Change Biology, 2019, 25(1): 12-24. doi: 10.1111/gcb.14482
    [43] ANGST G, MESSINGER J, GREINER M, et al. Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds[J]. Soil Biology and Biochemistry, 2018, 122: 19-30. doi: 10.1016/j.soilbio.2018.03.026
    [44] RUMPEL C, EUSTERHUES K, KÖGEL-KNABNER I. Location and chemical composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest soils[J]. Soil Biology and Biochemistry, 2004, 36(1): 177-190. doi: 10.1016/j.soilbio.2003.09.005
    [45] RUMPEL C, RODRÍGUEZ-RODRÍGUEZ A, GONZÁLEZ-PÉREZ J A, et al. Contrasting composition of free and mineral-bound organic matter in top-and subsoil horizons of Andosols[J]. Biology and Fertility of Soils, 2012, 48(4): 401-411. doi: 10.1007/s00374-011-0635-4
    [46] SANAULLAH M, CHABBI A, LEIFELD J, et al. Decomposition and stabilization of root litter in top- and subsoil horizons: what is the difference?[J]. Plant and Soil, 2011, 338(1/2): 127-141.
    [47] SPOHN M, KLAUS K, WANEK W, et al. Microbial carbon use efficiency and biomass turnover times depending on soil depth-Implications for carbon cycling[J]. Soil Biology and Biochemistry, 2016, 96: 74-81. doi: 10.1016/j.soilbio.2016.01.016
    [48] HICKS PRIES C E, SULMAN B N, WEST C, et al. Root litter decomposition slows with soil depth[J]. Soil Biology and Biochemistry, 2018, 125: 103-114. doi: 10.1016/j.soilbio.2018.07.002
    [49] SPIELVOGEL S, PRIETZEL J, KGEL-KNABNER I. Soil organic matter stabilization in acidic forest soils is preferential and soil type-specific[J]. European Journal of Soil Science, 2008, 59(4): 674-692. doi: 10.1111/j.1365-2389.2008.01030.x
    [50] KALBITZ K, KAISER K. Contribution of dissolved organic matter to carbon storage in forest mineral soils[J]. Journal of Plant Nutrition and Soil Science, 2008, 171(1): 52-60. doi: 10.1002/jpln.200700043
    [51] ZAK D R, FREEDMAN Z B, UPCHURCH R A, et al. Anthropogenic N deposition increases soil organic matter accumulation without altering its biochemical composition[J]. Global Change Biology, 2017, 23(2): 933-944. doi: 10.1111/gcb.13480
    [52] AHRENS B, BRAAKHEKKE M C, GUGGENBERGER G, et al. Contribution of sorption, DOC transport and microbial interactions to the 14C age of a soil organic carbon profile: insights from a calibrated process model[J]. Soil Biology and Biochemistry, 2015, 88: 390-402. doi: 10.1016/j.soilbio.2015.06.008
    [53] KUZYAKOV Y, BOGOMOLOVA I, GLASER B. Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis[J]. Soil Biology and Biochemistry, 2014, 70: 229-236. doi: 10.1016/j.soilbio.2013.12.021
    [54] HAMER U, POTTHAST K, MAKESCHIN F. Urea fertilisation affected soil organic matter dynamics and microbial community structure in pasture soils of Southern Ecuador[J]. Applied Soil Ecology, 2009, 43(2/3): 226-233.
    [55] ASHMAN M R, HALLETT P D, BROOKES P C. Are the links between soil aggregate size class, soil organic matter and respiration rate artefacts of the fractionation procedure?[J]. Soil Biology and Biochemistry, 2003, 35(3): 435-444. doi: 10.1016/S0038-0717(02)00295-X
    [56] DENEF K, SIX J, MERCKX R, et al. Short-term effects of biological and physical forces on aggregate formation in soils with different clay mineralogy[J]. Plant and Soil, 2002, 246(2): 185-200. doi: 10.1023/A:1020668013524
    [57] NAVARRO-GARCÍA F, CASERMEIRO M Á, SCHIMEL J P. When structure means conservation: effect of aggregate structure in controlling microbial responses to rewetting events[J]. Soil Biology and Biochemistry, 2012, 44(1): 1-8. doi: 10.1016/j.soilbio.2011.09.019
    [58] XU Y Z, LIU K, HAN Y, et al. A soil texture manipulation doubled the priming effect following crop straw addition as estimated by two models[J]. Soil and Tillage Research, 2019, 186: 11-22. doi: 10.1016/j.still.2018.09.011
    [59] KEILUWEIT M, BOUGOURE J J, NICO P S, et al. Mineral protection of soil carbon counteracted by root exudates[J]. Nature Climate Change, 2015, 5(6): 588-595. doi: 10.1038/nclimate2580
    [60] NAVEED M, BROWN L K, RAFFAN A C, et al. Rhizosphere-scale quantification of hydraulic and mechanical properties of soil impacted by root and seed exudates[J]. Vadose Zone Journal, 2018, 17(1): 170083. doi: 10.2136/vzj2017.04.0083
    [61] KUZYAKOV Y, FRIEDEL J K, STAHR K. Review of mechanisms and quantification of priming effects[J]. Soil Biology and Biochemistry, 2000, 32(11/12): 1485-1498.
    [62] BINGEMAN C W, VARNER J E, MARTIN W P. The effect of the addition of organic materials on the decomposition of an organic soil[J]. Soil Science Society of America Journal, 1953, 17(1): 34-38. doi: 10.2136/sssaj1953.03615995001700010008x
    [63] BASILE-DOELSCH I, BRUN T, BORSCHNECK D, et al. Effect of landuse on organic matter stabilized in organomineral complexes: a study combining density fractionation, mineralogy and δ13C[J]. Geoderma, 2009, 151(3/4): 77-86.
    [64] HOBLEY E, BALDOCK J, HUA Q, et al. Land-use contrasts reveal instability of subsoil organic carbon[J]. Global Change Biology, 2017, 23(2): 955-965. doi: 10.1111/gcb.13379
    [65] FONTAINE S, MARIOTTI A, ABBADIE L. The priming effect of organic matter: a question of microbial competition?[J]. Soil Biology and Biochemistry, 2003, 35(6): 837-843. doi: 10.1016/S0038-0717(03)00123-8
    [66] WANG G S, JAGADAMMA S, MAYES M A, et al. Microbial dormancy improves development and experimental validation of ecosystem model[J]. The ISME Journal, 2015, 9(1): 226-237. doi: 10.1038/ismej.2014.120
    [67] BLAGODATSKAYA Е, KUZYAKOV Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review[J]. Biology and Fertility of Soils, 2008, 45(2): 115-131. doi: 10.1007/s00374-008-0334-y
    [68] KUZYAKOV Y. Priming effects: interactions between living and dead organic matter[J]. Soil Biology and Biochemistry, 2010, 42(9): 1363-1371. doi: 10.1016/j.soilbio.2010.04.003
    [69] PAUL E A. The nature and dynamics of soil organic matter: plant inputs, microbial transformations, and organic matter stabilization[J]. Soil Biology and Biochemistry, 2016, 98: 109-126. doi: 10.1016/j.soilbio.2016.04.001
    [70] SALOMÃ C, NUNAN N, POUTEAU V, et al. Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms[J]. Global Change Biology, 2010, 16(1): 416-426. doi: 10.1111/j.1365-2486.2009.01884.x
    [71] RUMPEL C. Opportunities and threats of deep soil organic matter storage[J]. Carbon Management, 2014, 5(2): 115-117. doi: 10.1080/17583004.2014.912826
    [72] GUENET B, JUAREZ S, BARDOUX G, et al. Evidence that stable C is as vulnerable to priming effect as is more labile C in soil[J]. Soil Biology and Biochemistry, 2012, 52: 43-48. doi: 10.1016/j.soilbio.2012.04.001
    [73] GUENET B, LELOUP J, RAYNAUD X, et al. Negative priming effect on mineralization in a soil free of vegetation for 80 years[J]. European Journal of Soil Science, 2010, 61(3): 384-391. doi: 10.1111/j.1365-2389.2010.01234.x
    [74] ZHANG Y L, YAO S H, CAO X Y, et al. Structural evidence for soil organic matter turnover following glucose addition and microbial controls over soil carbon change at different horizons of a Mollisol[J]. Soil Biology and Biochemistry, 2018, 119: 63-73. doi: 10.1016/j.soilbio.2018.01.009
    [75] EUSTERHUES K, RUMPEL C, KLEBER M, et al. Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation[J]. Organic Geochemistry, 2003, 34(12): 1591-1600. doi: 10.1016/j.orggeochem.2003.08.007
    [76] KLEBER M, MIKUTTA R, TORN M S, et al. Poorly crystalline mineral phases protect organic matter in acid subsoil horizons[J]. European Journal of Soil Science, 2005, 56(6): 717-725.
    [77] MONI C, CHABBI A, NUNAN N, et al. Spatial dependance of organic carbon-metal relationships: a multi-scale statistical analysis, from horizon to field[J]. Geoderma, 2010, 158(3/4): 120-127.
    [78] MIKUTTA R, MIKUTTA C, KALBITZ K, et al. Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms[J]. Geochimica et Cosmochimica Acta, 2007, 71(10): 2569-2590. doi: 10.1016/j.gca.2007.03.002
    [79] LVTZOW M V, KÖGEL-KNABNER I, EKSCHMITT K, et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions-a review[J]. European Journal of Soil Science, 2006, 57(4): 426-445. doi: 10.1111/j.1365-2389.2006.00809.x
    [80] CHENU C and STOTZKY G. Interactions between microorganisms and soil particles: an overview[M]//CHENU C. Interactions between soil particles and microorganisms: impact on the terrestrial ecosystem. 2002: 3-40.
    [81] VOGEL C, HEISTER K, BUEGGER F, et al. Clay mineral composition modifies decomposition and sequestration of organic carbon and nitrogen in fine soil fractions[J]. Biology and Fertility of Soils, 2015, 51(4): 427-442. doi: 10.1007/s00374-014-0987-7
    [82] LIU Y L, YAO S H, HAN X Z, et al. Soil mineralogy changes with different agricultural practices during 8-year soil development from the parent material of a Mollisol[J]. Advances in Agronomy, 2017, 142: 143-179.
    [83] HUANG Q Y, WU H Y, CAI P, et al. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles[J]. Scientific Reports, 2015, 5: 16857. doi: 10.1038/srep16857
    [84] RUMPEL C, KÖGEL-KNABNER I. Deep soil organic matter-A key but poorly understood component of terrestrial C cycle[J]. Plant and Soil, 2011, 338(1/2): 143-158.
    [85] RUMPEL C, BAUMANN K, REMUSAT L, et al. Nanoscale evidence of contrasted processes for root-derived organic matter stabilization by mineral interactions depending on soil depth[J]. Soil Biology and Biochemistry, 2015, 85: 82-88. doi: 10.1016/j.soilbio.2015.02.017
    [86] 谭文峰, 周素珍, 刘凡, 等. 土壤中铁铝氧化物与黏土矿物交互作用的研究进展[J]. 土壤, 2007, 39(5): 726-730. doi: 10.3321/j.issn:0253-9829.2007.05.009

    TAN W F, ZHOU S Z, LIU F, et al. Advancement in the study on interactions between iron-aluminum (hydro-) oxides and clay minerals in soil[J]. Soils, 2007, 39(5): 726-730. doi: 10.3321/j.issn:0253-9829.2007.05.009
    [87] CHASSÉ A W, OHNO T, HIGGINS S R, et al. Chemical force spectroscopy evidence supporting the layer-by-layer model of organic matter binding to iron (oxy)hydroxide mineral surfaces[J]. Environmental Science and Technology, 2015, 49(16): 9733-9741. doi: 10.1021/acs.est.5b01877
    [88] VINDEDAHL A M, STREHLAU J H, ARNOLD W A, et al. Organic matter and iron oxide nanoparticles: aggregation, interactions, and reactivity[J]. Environmental Science: Nano, 2016, 3(3): 494-505. doi: 10.1039/C5EN00215J
    [89] WAN J M, TYLISZCZAK T, TOKUNAGA T K. Organic carbon distribution, speciation, and elemental correlations within soil microaggregates: applications of STXM and NEXAFS spectroscopy[J]. Geochimica et Cosmochimica Acta, 2007, 71(22): 5439-5449. doi: 10.1016/j.gca.2007.07.030
    [90] KLEBER M, NICO P S, PLANTE A, et al. Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity[J]. Global Change Biology, 2011, 17(2): 1097-1107. doi: 10.1111/j.1365-2486.2010.02278.x
    [91] HATTON P J, KLEBER M, ZELLER B, et al. Transfer of litter-derived N to soil mineral-organic associations: evidence from decadal 15N tracer experiments[J]. Organic Geochemistry, 2012, 42(12): 1489-1501. doi: 10.1016/j.orggeochem.2011.05.002
    [92] REMUSAT L, HATTON P J, NICO P S, et al. NanoSIMS study of organic matter associated with soil aggregates: advantages, limitations, and combination with STXM[J]. Environmental Science and Technology, 2012, 46(7): 3943-3949. doi: 10.1021/es203745k
    [93] SOLOMON D, LEHMANN J, HARDEN J, et al. Micro- and nano-environments of carbon sequestration: multi-element STXM-NEXAFS spectromicroscopy assessment of microbial carbon and mineral associations[J]. Chemical Geology, 2012, 329: 53-73. doi: 10.1016/j.chemgeo.2012.02.002
    [94] VOGEL C, BABIN D, PRONK G J, et al. Establishment of macro-aggregates and organic matter turnover by microbial communities in long-term incubated artificial soils[J]. Soil Biology and Biochemistry, 2014, 79: 57-67. doi: 10.1016/j.soilbio.2014.07.012
    [95] PETH S, CHENU C, LEBLOND N, et al. Localization of soil organic matter in soil aggregates using synchrotron-based X-ray microtomography[J]. Soil Biology and Biochemistry, 2014, 78: 189-194. doi: 10.1016/j.soilbio.2014.07.024
    [96] NEWCOMB C J, QAFOKU N P, GRATE J W, et al. Developing a molecular picture of soil organic matter-mineral interactions by quantifying organo-mineral binding[J]. Nature Communications, 2017, 8: 396. doi: 10.1038/s41467-017-00407-9
    [97] SIX J, PAUSTIAN K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool[J]. Soil Biology and Biochemistry, 2014, 68: A4-A9. doi: 10.1016/j.soilbio.2013.06.014
    [98] SIX J, GUGGENBERGER G, PAUSTIAN K, et al. Sources and composition of soil organic matter fractions between and within soil aggregates[J]. European Journal of Soil Science, 2001, 52(4): 607-618. doi: 10.1046/j.1365-2389.2001.00406.x
    [99] OLK D C, GREGORICH E G. Overview of the symposium proceedings, "meaningful pools in determining soil carbon and nitrogen dynamics"[J]. Soil Science Society of America Journal, 2006, 70(3): 967-974. doi: 10.2136/sssaj2005.0111
    [100] VON LVTZOW M, KÖGEL-KNABNER I, EKSCHMITT K, et al. SOM fractionation methods: relevance to functional pools and to stabilization mechanisms[J]. Soil Biology and Biochemistry, 2007, 39(9): 2183-2207. doi: 10.1016/j.soilbio.2007.03.007
    [101] DAVIDSON E A, SAVAGE K E, FINZI A C. A big-microsite framework for soil carbon modeling[J]. Global Change Biology, 2014, 20(12): 3610-3620. doi: 10.1111/gcb.12718
    [102] RITZ K, YOUNG I M. Interactions between soil structure and fungi[J]. Mycologist, 2004, 18(2): 52-59. doi: 10.1017/S0269915X04002010
    [103] ABIVEN S, MENASSERI S, ANGERS D A, et al. Dynamics of aggregate stability and biological binding agents during decomposition of organic materials[J]. European Journal of Soil Science, 2007, 58(1): 239-247. doi: 10.1111/j.1365-2389.2006.00833.x
    [104] COLEMAN K, JENKINSON D S. RothC-26.3-A Model for the turnover of carbon in soil[C]//POWLSON D S, SMITH P, SMITH J U. Evaluation of Soil Organic Matter Models, Using Existing Long-Term Datasets, Heidelberg: Spring-Verlag, 1996.
    [105] ABRAMOFF R, XU X F, HARTMAN M, et al. The Millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century[J]. Biogeochemistry, 2018, 137(1/2): 51-71.
    [106] NAVEED M, BROWN L K, RAFFAN A C, et al. Plant exudates may stabilize or weaken soil depending on species, origin and time[J]. European Journal of Soil Science, 2017, 68(6): 806-816. doi: 10.1111/ejss.12487
    [107] LUO Z K, BALDOCK J, WANG E L. Modelling the dynamic physical protection of soil organic carbon: insights into carbon predictions and explanation of the priming effect[J]. Global Change Biology, 2017, 23(12): 5273-5283. doi: 10.1111/gcb.13793
    [108] SEGOLI M, DE GRYZE S, DOU F, et al. Agg model: a soil organic matter model with measurable pools for use in incubation studies[J]. Ecological Modelling, 2013, 263: 1-9. doi: 10.1016/j.ecolmodel.2013.04.010
    [109] HASSINK J, WHITMORE A P. A model of the physical protection of organic matter in soils[J]. Soil Science Society of America Journal, 1997, 61(1): 131-139. doi: 10.2136/sssaj1997.03615995006100010020x
    [110] TANG J Y, RILEY W J. Weaker soil carbon-climate feedbacks resulting from microbial and abiotic interactions[J]. Nature Climate Change, 2015, 5(1): 56-60. doi: 10.1038/nclimate2438
    [111] DWIVEDI D, RILEY W J, TORN M S, et al. Mineral properties, microbes, transport, and plant-input profiles control vertical distribution and age of soil carbon stocks[J]. Soil Biology and Biochemistry, 2017, 107: 244-259. doi: 10.1016/j.soilbio.2016.12.019
    [112] RILEY W J, MAGGI F, KLEBER M, et al. Long residence times of rapidly decomposable soil organic matter: application of a multi-phase, multi-component, and vertically resolved model (BAMS1) to soil carbon dynamics[J]. Geoscientific Model Development, 2014, 7(4): 1335-1355. doi: 10.5194/gmd-7-1335-2014
    [113] SALAZAR A, SULMAN B N, DUKES J S. Microbial dormancy promotes microbial biomass and respiration across pulses of drying-wetting stress[J]. Soil Biology and Biochemistry, 2018, 116: 237-244. doi: 10.1016/j.soilbio.2017.10.017
    [114] SULMAN B N, PHILLIPS R P, OISHI A C, et al. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2[J]. Nature Climate Change, 2014, 4(12): 1099-1102. doi: 10.1038/nclimate2436
    [115] WIEDER W R, ALLISON S D, DAVIDSON E A, et al. Explicitly representing soil microbial processes in Earth system models[J]. Global Biogeochemical Cycles, 2015, 29(10): 1782-1800. doi: 10.1002/2015GB005188
    [116] WIEDER W R, GRANDY A S, KALLENBACH C M, et al. Integrating microbial physiology and physio-chemical principles in soils with the MIcrobial-MIneral Carbon Stabilization (MIMICS) model[J]. Biogeosciences, 2014, 11(14): 3899-3917. doi: 10.5194/bg-11-3899-2014
    [117] BRADFORD M A, VEEN G F, BONIS A, et al. A test of the hierarchical model of litter decomposition[J]. Nature Ecology and Evolution, 2017, 1(12): 1836-1845. doi: 10.1038/s41559-017-0367-4
    [118] SULMAN B N, MOORE J A M, ABRAMOFF R, et al. Multiple models and experiments underscore large uncertainty in soil carbon dynamics[J]. Biogeochemistry, 2018, 141(2): 109-123. doi: 10.1007/s10533-018-0509-z
    [119] WIEDER W R, HARTMAN M D, SULMAN B N, et al. Carbon cycle confidence and uncertainty: exploring variation among soil biogeochemical models[J]. Global Change Biology, 2018, 24(4): 1563-1579. doi: 10.1111/gcb.13979
    [120] LIU K, XU Y Z, FENG W T, et al. Modeling the dynamics of protected and primed organic carbon in soil and aggregates under constant soil moisture following litter incorporation[J]. Soil Biology and Biochemistry, 2020, 151: 108039. doi: 10.1016/j.soilbio.2020.108039
    [121] JENKINSON D S, COLEMAN K. The turnover of organic carbon in subsoils. Part 2. Modelling carbon turnover[J]. European Journal of Soil Science, 2008, 59(2): 400-413. doi: 10.1111/j.1365-2389.2008.01026.x
    [122] KOVEN C D, RILEY W J, SUBIN Z M, et al. The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4[J]. Biogeosciences, 2013, 10(11): 7109-7131. doi: 10.5194/bg-10-7109-2013
    [123] GUENET B, EGLIN T, VASILYEVA N, et al. The relative importance of decomposition and transport mechanisms in accounting for soil organic carbon profiles[J]. Biogeosciences, 2013, 10(4): 2379-2392. doi: 10.5194/bg-10-2379-2013
    [124] CAMINO-SERRANO M, GUENET B, LUYSSAERT S, et al. ORCHIDEE-SOM: modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe[J]. Geoscientific Model Development, 2018, 11(3): 937-957. doi: 10.5194/gmd-11-937-2018
  • 加载中
图(3)
计量
  • 文章访问数:  1013
  • HTML全文浏览量:  267
  • PDF下载量:  243
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-28
  • 修回日期:  2022-06-22
  • 网络出版日期:  2022-08-26

目录

    /

    返回文章
    返回