留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大豆籽粒大小遗传调控研究现状

余晗 张红香 袁珊

余晗, 张红香, 袁珊. 大豆籽粒大小遗传调控研究现状[J]. 土壤与作物, 2022, 11(1): 18-30. doi: 10.11689/j.issn.2095-2961.2022.01.003
引用本文: 余晗, 张红香, 袁珊. 大豆籽粒大小遗传调控研究现状[J]. 土壤与作物, 2022, 11(1): 18-30. doi: 10.11689/j.issn.2095-2961.2022.01.003
YU Han, ZHANG Hongxiang, YUAN Shan. Current status of genetic regulation in soybean seed size[J]. Soils and Crops, 2022, 11(1): 18-30. doi: 10.11689/j.issn.2095-2961.2022.01.003
Citation: YU Han, ZHANG Hongxiang, YUAN Shan. Current status of genetic regulation in soybean seed size[J]. Soils and Crops, 2022, 11(1): 18-30. doi: 10.11689/j.issn.2095-2961.2022.01.003

大豆籽粒大小遗传调控研究现状

doi: 10.11689/j.issn.2095-2961.2022.01.003
基金项目: 

中国科学院东北地理与农业生态研究所自选/自主部署项目 E155S105

详细信息
    作者简介:

    余晗(1991-),女,硕士,主要从事大豆分子育种的相关研究.E-mail: yuhan@iga.ac.cn

    通讯作者:

    张红香(1981-),女,研究员,主要从事植物繁殖和种子适应机制相关研究.E-mail: zhanghongxiang@iga.ac.cn

    袁珊(1988-),女,副研究员,主要从事大豆分子育种的相关研究.E-mail: yuanshan@caas.cn

  • 中图分类号: S565.1

Current status of genetic regulation in soybean seed size

  • 摘要:

    籽粒大小是大豆产量和外观品质的重要构成要素,具有巨大的经济价值,一直以来都是育种的主要目标之一。大豆籽粒大小由胚、胚乳和种皮发育共同协调决定。目前已报道的与大豆籽粒重相关的QTL位点309个,但大多位点尚未进行功能验证。已发现的与大豆籽粒大小相关的基因有17个,多数与母本种皮发育调控相关,其它与合子组织和植物激素调控途径相关。其中,发挥正向和负向调控作用的基因分别有12个和4个。在不影响大豆品质情况下,PP2C-1Gm20OXCYP78A等基因在植物个体发育过程中对籽粒大小的调节发挥关键作用,有望成为大豆分子设计育种中的优良靶点。本文重点从连锁分析和关联分析方法,介绍了已鉴定的与大豆籽粒大小相关的QTL及其位点,综述了大豆籽粒大小调控分子机制的研究进展,并根据现阶段的研究探讨了未来的研究热点和研究方向,以期为大豆籽粒分子调控机制全面解析和高产育种技术创新提供理论参考。

     

  • 图  1  大豆籽粒发育阶段示意图(改编自Sundaresan等[23])

    Figure  1.  Schematic diagram of developmental stages of soybean seeds(revised from Sundaresan et al[23])

    图  2  大豆籽粒大小/重量调控网络

    注:黑色箭头代表种皮发育调控过程,蓝色箭头代表胚/胚乳发育调控过程,红色箭头代表植物激素相关调控过程,灰色箭头代表未知位置的调控过程。BR代表油菜素内酯,GAs代表赤霉素,ABA代表脱落酸。

    Figure  2.  Soybean seed size/weight regulation network

    Note: The black arrow represents the process of seed coat development; the blue arrow represents the process of embryo/endosperm development; the red arrow represents the process of plant hormone related regulation; and the gray arrow represents the process of unknown location regulation.BR means brassinosteroid, GAs means gibberellin, ABA means abscisic acid.

    表  1  大豆籽粒大小/重量相关数量性状基因座

    Table  1.   The quantitative trait loci of soybean seed size or weight

    分离类型
    Analysis
    重组自交系
    Recombinant inbred lines
    群体类型
    Population type
    群体大小
    Population number
    分析法
    Analysis method
    数量性状基因座数量
    Number of quantitative trait loci
    参考文献
    Reference
    连锁分析
    Linkage analysis
    Young×PI416937 F4群体  F4 population 120 IM和方差分析
    IM and ANOVA
    7 [25]
    PI9710×COKER23 F2群体  F2 population 111 9 [25]
    V71-370×PI407.162 F2∶3群体  F2∶3 population 150 方差分析
    ANOVA
    6 [29]
    Kefeng1×Nannong1138-2 F9 RIL 201 IM 6 [30]
    RG10×OX948 F5 RIL 169 CIM 7 [31]
    Kefeng1×Nannong1138-2 F2∶7∶14 RIL 184 CIM 6 [32]
    Lishuizhongzihuang×Nannong493-1 F2∶3-F2∶7 RIL 504 BhGLM 7 [33]
    Zhongpin03-5373×Zhonghuang13 F8 RIL 254 ICIM 18 [27]
    Kefeng1×Nannong1138-2 F7∶11 RIL 184 CIM 5 [34]
    Ohsuzu×Athow(PI595926)、 F6∶7 RIL 225 CIM 15 [26]
    Stressland(PI593654)×Tachingagaha(PI561396) 250
    Lishuizhongzihuang、Nannong 493-1× 265个中国栽培品种
    Lishuizhongzihuang、Nannong 493-1× 265 cultivars in China
    F7∶8 RIL 504 CIM 8 [35]
    Dongnong 46×L-100 F2∶6、F2∶7 RIL 129 ICIM 5 [36]
    Nannong493-1×PI 342618B F6∶9-F6∶11 RIL 161 CIM 8 [28]
    关联分析GWAS 中国野生大豆自然群体
    Natural populations of wild-type soybean in China
    174 GLM 7 [41]
    美国农业部大豆种质采集中心品种
    Plant introduction (PI) lines from the USDA Soybean Germplasm Collection
    309 GLM、MLM 22 [38]
    美国农业部大豆种质采集中心品种
    PI lines from the USDA Soybean Germplasm Collection
    166 MLM 17 [42]
    早熟株系和多地理起源的大豆引种株系
    PI linesof early maturity groups and PI lines from geographical origins
    86 CMLM 5 [37]
    中国国家大豆基因库中地方品种
    Plant materials from the Chinese National Soybean GeneBank
    133 / 63 [39]
    中国黄淮品种49份、东北南部品种49份、东北北部品种48份
    49 soybean accessions from Huanghuai, 49 from Northeast South and 48 from Northeast North in China
    146 GLM、MLM 21 [40]
      注:BhGLM代表贝叶斯分层广义线性模型;CMLM代表紧缩混合线性模型。
      Note: BhGLM means bayesian hierarchical generalized linear model;CMLM means compressed mixed linear model.
    下载: 导出CSV

    表  2  大豆籽粒大小/重量发育相关的基因

    Table  2.   Genes associated with the development of soybean seed size/weight

    作用部位
    Effect position
    编号
    Number
    基因名称
    Gene name
    正向/负向调控籽粒大小
    Positive/negative regulation of seed size
    调控机制
    Regulatory mechanism
    参考文献
    Reference
    种皮
    Seed coat
    1 KLUH/CYP78A 正向 Positive 控制珠被发育(细胞增殖)→种皮的生长→种子的生长  It controls integument development(cell proliferation)→growth of seed coat→growth of seed [47-48, 50]
    2 Glyma.13G261700 正向  Positive 编码氧化还原酶且含有细胞色素P450蛋白结构域→参与次生代谢物的生理过程→影响大豆籽粒大小/粒重  It encodes oxidoreductase and contains cytochrome P450 protein domain→be involved in the physiological process of secondary metabolites→affects soybean seed size/ weight [51]
    3 Glyma.13G259700 正向  Positive 编码泛素水解酶→参与无机离子的转运与代谢等生理活动→影响籽粒大小/粒重  It encodes ubiquitin hydrolase→participates in physiological activities such as transport and metabolism of inorganic ions→affects soybean seed size/weight [51]
    4 PP2C-1
    (Glyma.17g33690)
    正向  Positive 与BR信号转导的关键转录因子GmBZR1关联→促进GmBZR1去磷酸化的积累→增强珠被细胞大小、激活种子性状相关基因→控制种子的大小  It is associated with a key transcription factor in BR signal transduction(GmBZR1)→promotes the accumulation of GmBZR1 dephosphorylation→enhances the nucellar cell size and activates genes related to seed traits→controls seed size [53]
    5 Glyma.05G019800 正向  Positive 能够编码某未知功能蛋白→在单细胞生长调节过程种发挥作用→影响种子的大小/粒重  It encodesa protein of unknown function→plays a role in the regulation of single cell growth→affects seed size/weight [51]
    6 Glyma.07G022800 正向  Positive 编码乙酰基转移酶→参与氨基酸的运输和代谢等生理活动→影响大豆籽粒大小  It encodesacetyltransferase→participates in the transport and metabolism of amino acids→affects seed size [51]
    7 GmSWEET10a、GmSWEET10b 正向  Positive (在种皮中特异表达)运输蔗糖和己糖到胚胎→胚胎细胞分裂和扩张→更大的种子(Specifically expressed in seed coat)  It transports sucrose and hexose to embryo→embryonic cells divide and expand→bigger seeds [60]
    8 KIX8/9PPD1/2MYC3/4 负向  Negative KIX-PPD-MYC复合物与GRF-INTERACTING FACTOR 1(GIF1)启动子中典型的G-box序列相结合→抑制GIF1表达→抑制珠被内细胞的增殖和延伸→抑制种子生长  KIX-PPD-MYC complexes bind to typical G-box sequences of GRF-INTERACTING FACTOR 1(GIF1)promoters→inhibits the expression of GIF1→inhibits the proliferation and extension of integument cells→inhibits seed growth [61]
    胚、胚乳
    Embryo, endosperm
    1 BIG SEEDS1 负向  Negative BS1编码植物特异性转录调控因子TIFY家族→调控原代细胞增殖→控制植物器官(种子、种荚和叶片)的大小  BS1 encodes plant-specific transcriptional regulators—TIFY family→regulates primary cell proliferation→controls the size of plant organs(seeds, seed pods and leaves) [65]
    2 GmDREBL 正向  Positive (定位于细胞核)GmDREBL具有转录激活能力→结合WR1启动子区域并激活其表达→拟南芥中过表达GmDREBL→种子大小增加(Located in the nucleus)
    GmDREBL has a capacity of transcriptional activation→it binds to the WR1 promoter region and activates its expression→overexpression GmDREBL in Arabidopsis→increases seed size
    [66]
    植物激素相关基因
    Plant hormone related genes
    1 GmGA20OX 正向  Positive GA20OX编码GA生物合成限速步骤中的一种酶→过表达GA20OX→提高种子大小
    GA20OX encodes an enzyme in the rate-limiting step of GA biosynthesis; Overexpression GA20OX→increases seed size
    [67]
    2 Glyma.02G115900 待验证  To be verified Glyma.02G115900编码14-3-3蛋白SGF14→该蛋白与靶蛋白直接结合在多种细胞过程中发挥重要作用→调控GAs、ABA和BR的生物合成→参与调控植物信号途径→影响籽粒发育 Glyma.02G115900 encodes 14-3-3 protein SGF14→SGF14 directly binds to target proteins and plays an important role in a variety of cellular processes→regulates the biosynthesis of GAs, ABA and BR→participates in the regulation of plant signaling pathways→affect seed development [68-70]
    3 GmCIF1 负向  Negative 沉默GmCIF1后→细胞壁转化酶(CWI)升高→蔗糖代谢和库强度的过程活性显著提高→种子重量增加 Soybean with GmCIF1 silenced→cell wall invertase(CWI)increased→the process activity of sucrose metabolism and sink strength increased significantly→seed weight increases [72]
    4 GmFAD3 负向 Negative 大豆植株沉默GmFAD3→积累更高水平的JA→提高对菜豆荚斑驳病毒(BPMV)的敏感性→产出更大、更重籽粒 Soybean with GmFAD3 silenced→accumulates higher levels of JA→improves the sensitivity to vegetable pod mottle virus(BPMV)→produces larger and heavier seeds [73]
    其它基因
    Other genes
    1 SoyWRKY15a 正向  Positive 调控区单倍型变异(5′非翻译区(5′UTR)中CT的重复数目变异)→种子的大小  Haplotype variation in the regulatory region(variation in CT repeat number in the 5′ untranslated region(5′ UTR))→seed size [74]
    2 ThIPK2 正向 Positive 转基因ThIPK2到大豆中→转化植株种子大小增加 Transgenic ThIPK2 into soybean → the seed size of transformant plant increased [77]
    3 GmDof4GmDof11 正向  Positive 转基因GmDof4GmDof11→种子千粒重增加  Transgenic GmDof4 and GmDof11 into soybean→thousand-seed weight increased [78]
    下载: 导出CSV
  • [1] 冯献忠, 刘宝辉, 杨素欣. 大豆分子设计育种研究进展与展望[J]. 土壤与作物, 2014, 3(4): 123-131. doi: 10.11689/j.issn.2095-2961.2014.04.001

    FENG X Z, LIU B H, YANG S X. Progress and perspective of soybean molecular design breeding research[J]. Soil and Crop, 2014, 3(4): 123-131. doi: 10.11689/j.issn.2095-2961.2014.04.001
    [2] 石楠, 郭恬, 卢俊玮. 大豆产业发展的困境及出路探析[J]. 湖南农业科学, 2020(9): 88-90. https://www.cnki.com.cn/Article/CJFDTOTAL-HNNK202009023.htm

    SHI N, GUO T, LU J W. Discussion on the predicament and future of soybean industry development[J]. Hunan Agricultural Sciences, 2020(9): 88-90. https://www.cnki.com.cn/Article/CJFDTOTAL-HNNK202009023.htm
    [3] RAY D K, MUELLER N D, WEST P C, et al. Yield trends are insufficient to double global crop production by 2050[J]. PLoS One, 2013, 8(6): e66428. doi: 10.1371/journal.pone.0066428
    [4] AINSWORTH E A, YENDREK C R, SKONECZKA J A, et al. Accelerating yield potential in soybean: potential targets for biotechnological improvement[J]. Plant, Cell and Environment, 2012, 35(1): 38-52. doi: 10.1111/j.1365-3040.2011.02378.x
    [5] JIN J, LIU X B, WANG G H, et al. Agronomic and physiological contributions to the yield improvement of soybean cultivars released from 1950 to 2006 in Northeast China[J]. Field Crops Research, 2010, 115(1): 116-123. doi: 10.1016/j.fcr.2009.10.016
    [6] VENABLE D L. Size-number trade-offs and the variation of seed size with plant resource status[J]. The American Naturalist, 1992, 140(2): 287-304. doi: 10.1086/285413
    [7] GNAN S, PRIEST A, KOVER P X. The genetic basis of natural variation in seed size and seed number and their trade-off using Arabidopsis thaliana MAGIC lines[J]. Genetics, 2014, 198(4): 1751-1758. doi: 10.1534/genetics.114.170746
    [8] LÁZARO A, LARRINAGA A R. A multi-level test of the seed number/size trade-off in two Scandinavian communities[J]. PLoS One, 2018, 13(7): e0201175. doi: 10.1371/journal.pone.0201175
    [9] SAVADI S. Molecular regulation of seed development and strategies for engineering seed size in crop plants[J]. Plant Growth Regulation, 2018, 84(3): 401-422. doi: 10.1007/s10725-017-0355-3
    [10] LIANG H Z, LI W D, WANG H, et al. Genetic effects on seed traits in soybean[J]. Yi Chuan Xue Bao=Acta Genetica Sinica, 2005, 32(11): 1199-1204.
    [11] GOUGH R E. Seed quality: basic mechanisms and agricultural implications[M]. CRC Press, 2020.
    [12] WILSON D O. The storage of orthodox seeds[M]. Seed Quality. CRC Press, 2020: 173-207.
    [13] 王春雨, 李彦生, 刘长锴, 等. 不同粒重大豆籽粒蛋白质、脂肪及可溶性糖积累动态[J]. 新疆农业科学, 2021, 58(1): 56-64. https://www.cnki.com.cn/Article/CJFDTOTAL-XJNX202101007.htm

    WANG C Y, LI Y S, LIU C K, et al. Seed protein, oil and free soluble sugar accumulation during seed filling in soybean cultivars with different seed size[J]. Xinjiang Agricultural Sciences, 2021, 58(1): 56-64. https://www.cnki.com.cn/Article/CJFDTOTAL-XJNX202101007.htm
    [14] 李振华, 罗珊, 段玉, 等. 大豆籽粒大小差异对豆芽营养品质的影响[J]. 天津农业科学, 2011, 17(1): 28-31+36. doi: 10.3969/j.issn.1006-6500.2011.01.008

    LI Z H, LUO S, DUAN Y, et al. The influence aboutbeen seed size on nutritional quality of bean sprouts[J]. Tianjin Agricultural Sciences, 2011, 17(1): 28-31+36. doi: 10.3969/j.issn.1006-6500.2011.01.008
    [15] SEDBROOK J C, PHIPPEN W B, MARKS M D. New approaches to facilitate rapid domestication of a wild plant to an oilseed crop: example pennycress(Thlaspi arvense L. )[J]. Plant Science, 2014, 227: 122-132. doi: 10.1016/j.plantsci.2014.07.008
    [16] GARCIA D, FITZ GERALD J N, BERGER F. Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis[J]. The Plant Cell, 2005, 17(1): 52-60. doi: 10.1105/tpc.104.027136
    [17] HAUGHN G, CHAUDHURY A. Genetic analysis of seed coat development in Arabidopsis[J]. Trends in Plant Science, 2005, 10(10): 472-477. doi: 10.1016/j.tplants.2005.08.005
    [18] GARCIA D, SAINGERY V, CHAMBRIER P, et al. Arabidopsis haiku mutants reveal new controls of seed size by endosperm[J]. Plant Physiology, 2003, 131(4): 1661-1670. doi: 10.1104/pp.102.018762
    [19] LI N, LI Y H. Signaling pathways of seed size control in plants[J]. Current Opinion in Plant Biology, 2016, 33: 23-32. doi: 10.1016/j.pbi.2016.05.008
    [20] LI N, XU R, LI Y H. Molecular networks of seed size control in plants[J]. Annual Review of Plant Biology, 2019, 70: 435-463. doi: 10.1146/annurev-arplant-050718-095851
    [21] SUN X D, SHANTHARAJ D, KANG X J, et al. Transcriptional and hormonal signaling control of Arabidopsis seed development[J]. Current Opinion in Plant Biology, 2010, 13(5): 611-620. doi: 10.1016/j.pbi.2010.08.009
    [22] 林敏. 农业生物育种技术的发展历程及产业化对策[J]. 生物技术进展, 2021, 11(4): 405-417. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJZ202104003.htm

    LIN M. The development course and industrialization countermeasure of agricultural biological breeding technology[J]. Current Biotechnology, 2021, 11(4): 405-417. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJZ202104003.htm
    [23] SUNDARESAN V. Control of seed size in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(50): 17887-17888. doi: 10.1073/pnas.0509021102
    [24] HAN Y P, LI D M, ZHU D, et al. QTL analysis of soybean seed weight across multi-genetic backgrounds and environments[J]. Theoretical and Applied Genetics, 2012, 125(4): 671-683. doi: 10.1007/s00122-012-1859-x
    [25] MIAN M A R, BAILEY M A, TAMULONIS J P, et al. Molecular markers associated with seed weight in two soybean populations[J]. Theoretical and Applied Genetics, 1996, 93(7): 1011-1016. doi: 10.1007/BF00230118
    [26] KATO S, SAYAMA T, FUJⅡ K, et al. A major and stable QTL associated with seed weight in soybean across multiple environments and genetic backgrounds[J]. Theoretical and Applied Genetics, 2014, 127(6): 1365-1374. doi: 10.1007/s00122-014-2304-0
    [27] KARIKARI B, CHEN S X, XIAO Y T, et al. Utilization of interspecific high-density genetic map of RIL population for the QTL detection and candidate gene mining for 100-seed weight in soybean[J]. Frontiers in Plant Science, 2019, 10: 1001. doi: 10.3389/fpls.2019.01001
    [28] LIU Y L, LI Y H, REIF J C, et al. Identification of quantitative trait loci underlying plant height and seed weight in soybean[J]. The Plant Genome, 2013, 6(3). DOI: 10.3835/plantgenome2013.03.0006.
    [29] MAUGHAN P J, MAROOF M A, BUSS G R. Molecular-marker analysis of seed-weight: genomic locations, gene action, and evidence for orthologous evolution among three legume species[J]. Theoretical and Applied Genetics, 1996, 93(4): 574-579. doi: 10.1007/BF00417950
    [30] 吴晓雷, 王永军, 贺超英, 等. 大豆重要农艺性状的QTL分析[J]. 遗传学报, 2001, 28(10): 947-955. https://www.cnki.com.cn/Article/CJFDTOTAL-YCXB200110008.htm

    WU X L, WANG Y J, HE C Y, et al. QTLs mapping of some agronomic traits of soybean[J]. Acta Genetica Sinica, 2001, 28(10): 947-955. https://www.cnki.com.cn/Article/CJFDTOTAL-YCXB200110008.htm
    [31] REINPRECHT Y, POYSA V W, YU K F, et al. Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean(Glycine max(L. ) Merrill) germplasm[J]. Genome, 2006, 49(12): 1510-1527. doi: 10.1139/g06-112
    [32] 黄中文, 赵团结, 喻德跃, 等. 大豆产量有关性状QTL的检测[J]. 中国农业科学, 2009, 42(12): 4155-4165. doi: 10.3864/j.issn.0578-1752.2009.12.005

    HUANG Z W, ZHAO T J, YU D Y, et al. Detection of QTLs of yield related traits in soybean[J]. Scientia Agricultura Sinica, 2009, 42(12): 4155-4165. doi: 10.3864/j.issn.0578-1752.2009.12.005
    [33] 闫宁, 谢尚潜, 耿青春, 等. 利用Bayes分层广义线性模型剖析大豆籽粒性状的遗传基础[J]. 作物学报, 2013, 39(2): 258-268. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201302012.htm

    YAN N, XIE S Q, GENG Q C, et al. Genetic basics of seed traits in soybean with Bayes hierarchical generalized linear model method[J]. Acta Agronomica Sinica, 2013, 39(2): 258-268. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201302012.htm
    [34] HU Z B, ZHANG H R, KAN G Z, et al. Determination of the genetic architecture of seed size and shape via linkage and association analysis in soybean(Glycine max L. Merr. )[J]. Genetica, 2013, 141(4/5/6): 247-254. http://www.researchgate.net/profile/Huairen_Zhang/publication/237097649_Determination_of_the_genetic_architecture_of_seed_size_and_shape_via_linkage_and_association_analysis_in_soybean_Glycine_max_L_Merr/links/0deec533a6f3411df7000000/Determination-of-the-genetic-architecture-of-seed-size-and-shape-via-linkage-and-association-analysis-in-soybean-Glycine-max-L-Merr.pdf
    [35] XIE F T, NIU Y, ZHANG J, et al. Fine mapping of quantitative trait loci for seed size traits in soybean[J]. Molecular Breeding, 2014, 34(4): 2165-2178. doi: 10.1007/s11032-014-0171-7
    [36] 郭洁, 张继雨, 陈峰娜, 等. 控制大豆油分含量和百粒重的QTL定位[J]. 基因组学与应用生物学, 2017, 36(7): 2983-2988. https://www.cnki.com.cn/Article/CJFDTOTAL-GXNB201707062.htm

    GUO J, ZHANG J Y, CHEN F N, et al. QTL mapping for controlling oil content and 100-seed weight in soybean[J]. Genomics and Applied Biology, 2017, 36(7): 2983-2988. https://www.cnki.com.cn/Article/CJFDTOTAL-GXNB201707062.htm
    [37] COPLEY T R, DUCEPPE M O, O'DONOUGHUE L S. Identification of novel loci associated with maturity and yield traits in early maturity soybean plant introduction lines[J]. BMC Genomics, 2018, 19(1): 167. doi: 10.1186/s12864-018-4558-4
    [38] ZHANG J P, SONG Q J, CREGAN P B, et al. Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean(Glycine max)[J]. Theoretical and Applied Genetics, 2016, 129(1): 117-130. doi: 10.1007/s00122-015-2614-x
    [39] LI X N, ZHANG X L, ZHU L M, et al. Genome-wide association study of four yield-related traits at the R6 stage in soybean[J]. BMC Genetics, 2019, 20(1): 39. doi: 10.1186/s12863-019-0737-9
    [40] LI J J, ZHAO J H, LI Y H, et al. Identification of a novel seed size associated locus SW9-1 in soybean[J]. The Crop Journal, 2019, 7(4): 548-559. doi: 10.1016/j.cj.2018.12.010
    [41] 范虎, 文自翔, 王春娥, 等. 中国野生大豆群体农艺加工性状与SSR关联分析和特异材料的遗传构成[J]. 作物学报, 2013, 39(5): 775-788. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201305006.htm

    FAN H, WEN Z X, WANG C E, et al. Association analysis between agronomic-processing traits and SSR markers and genetic dissection of specific accessions in Chinese wild soybean population[J]. Acta Agronomica Sinica, 2013, 39(5): 775-788. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201305006.htm
    [42] YAN L, HOFMANN N, LI S X, et al. Identification of QTL with large effect on seed weight in a selective population of soybean with genome-wide association and fixation index analyses[J]. BMC Genomics, 2017, 18(1): 529. doi: 10.1186/s12864-017-3922-0
    [43] MAEDA S, DUBOUZET J G, KONDOU Y, et al. The rice CYP78A gene BSR2 confers resistance to Rhizoctonia solani and affects seed size and growth in Arabidopsis and rice[J]. Scientific Reports, 2019, 9: 587. doi: 10.1038/s41598-018-37365-1
    [44] MA M, WANG Q, LI Z J, et al. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat(Triticum aestivum L. ), affects seed size[J]. The Plant Journal, 2015, 83(2): 312-325. doi: 10.1111/tpj.12896
    [45] FANG W J, WANG Z B, CUI R F, et al. Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana[J]. The Plant Journal, 2012, 70(6): 929-939. doi: 10.1111/j.1365-313X.2012.04907.x
    [46] ADAMSKI N M, ANASTASIOU E, ERIKSSON S, et al. Local maternal control of seed size by KLUH/CYP78A5-dependent growth signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(47): 20115-20120. doi: 10.1073/pnas.0907024106
    [47] WANG X B, LI Y H, ZHANG H W, et al. Evolution and association analysis of GmCYP78A10 gene with seed size/weight and pod number in soybean[J]. Molecular Biology Reports, 2015, 42(2): 489-496. doi: 10.1007/s11033-014-3792-3
    [48] ZHAO B T, DAI A H, WEI H C, et al. Arabidopsis KLU homologue GmCYP78A72 regulates seed size in soybean[J]. Plant Molecular Biology, 2016, 90(1/2): 33-47. http://www.onacademic.com/detail/journal_1000038326582610_c11c.html
    [49] DAI A H, YANG S X, ZHOU H K, et al. Evolution and expression divergence of the CYP78A subfamily genes in soybean[J]. Genes, 2018, 9(12): 611. doi: 10.3390/genes9120611
    [50] DU J, WANG S D, HE C M, et al. Identification of regulatory networks and hub genes controlling soybean seed set and size using RNA sequencing analysis[J]. Journal of Experimental Botany, 2017, 68(8): 1955-1972.
    [51] 宿洋, 杨静, 郭勇, 等. 大豆百粒重相关基因的全基因组发掘分析[J]. 作物杂志, 2021(3): 8-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ202103002.htm

    SU Y, YANG J, GUO Y, et al. Whole genome discovery and analysis of genes related to 100-seed weight in soybean[J]. Crops, 2021(3): 8-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ202103002.htm
    [52] DU L, LI N, CHEN L L, et al. The ubiquitin receptor DA1 regulates seed and organ size by modulating the stability of the ubiquitin-specific protease UBP15/SOD2 in Arabidopsis[J]. The Plant Cell, 2014, 26(2): 665-677. doi: 10.1105/tpc.114.122663
    [53] LU X, XIONG Q, CHENG T, et al. A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight[J]. Molecular Plant, 2017, 10(5): 670-684. doi: 10.1016/j.molp.2017.03.006
    [54] WANG S K, LI S, LIU Q, et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics, 2015, 47(8): 949-954. doi: 10.1038/ng.3352
    [55] SONG X J, KUROHA T, AYANO M, et al. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(1): 76-81. doi: 10.1073/pnas.1421127112
    [56] RUAN Y L. Sucrose metabolism: gateway to diverse carbon use and sugar signaling[J]. Annual Review of Plant Biology, 2014, 65: 33-67. doi: 10.1146/annurev-arplant-050213-040251
    [57] CHEN L Q. SWEET sugar transporters for phloem transport and pathogen nutrition[J]. The New Phytologist, 2014, 201(4): 1150-1155. doi: 10.1111/nph.12445
    [58] CHEN L Q, CHEUNG L S, FENG L, et al. Transport of sugars[J]. Annual Review of Biochemistry, 2015, 84: 865-894. doi: 10.1146/annurev-biochem-060614-033904
    [59] WANG S D, YOKOSHO K, GUO R Z, et al. The soybean sugar transporter GmSWEET15 mediates sucrose export from endosperm to early embryo[J]. Plant Physiology, 2019, 180(4): 2133-2141. doi: 10.1104/pp.19.00641
    [60] WANG S D, LIU S L, WANG J, et al. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication[J]. National Science Review, 2020, 7(11): 1776-1786. doi: 10.1093/nsr/nwaa110
    [61] LIU Z P, LI N, ZHANG Y Y, et al. Transcriptional repression of GIF1 by the KIX-PPD-MYC repressor complex controls seed size in Arabidopsis[J]. Nature Communications, 2020, 11: 1846. doi: 10.1038/s41467-020-15603-3
    [62] LEE B H, WYNN A N, FRANKS R G, et al. The Arabidopsis thaliana GRF-INTERACTING FACTOR gene family plays an essential role in control of male and female reproductive development[J]. Developmental Biology, 2014, 386(1): 12-24. doi: 10.1016/j.ydbio.2013.12.009
    [63] LEE B H, KO J H, LEE S M, et al. The Arabidopsis GRF-INTERACTING FACTOR gene family performs an overlapping function in determining organ size as well as multiple developmental properties[J]. Plant Physiology, 2009, 151(2): 655-668. doi: 10.1104/pp.109.141838
    [64] LI N, LIU Z P, WANG Z B, et al. STERILE APETALA modulates the stability of a repressor protein complex to control organ size in Arabidopsis thaliana[J]. PLoS Genetics, 2018, 14(2): e1007218. doi: 10.1371/journal.pgen.1007218
    [65] GE L F, YU J B, WANG H L, et al. Increasing seed size and quality by manipulating BIG SEEDS1 in legume species[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(44): 12414-12419. doi: 10.1073/pnas.1611763113
    [66] ZHANG Y Q, LU X, ZHAO F Y, et al. Soybean GmDREBL increases lipid content in seeds of transgenic Arabidopsis[J]. Scientific Reports, 2016, 6: 34307. doi: 10.1038/srep34307
    [67] LU X, LI Q T, XIONG Q, et al. The transcriptomic signature of developing soybean seeds reveals the genetic basis of seed trait adaptation during domestication[J]. The Plant Journal, 2016, 86(6): 530-544. doi: 10.1111/tpj.13181
    [68] IGARASHI D, ISHIDA S, FUKAZAWA J, et al. 14-3-3 proteins regulate intracellular localization of the bZIP transcriptional activator RSG[J]. The Plant Cell, 2001, 13(11): 2483-2497. doi: 10.1105/tpc.010188
    [69] GAMPALA S S, KIM T W, HE J X, et al. An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis[J]. Developmental Cell, 2007, 13(2): 177-189. doi: 10.1016/j.devcel.2007.06.009
    [70] SCHOONHEIM P J, COSTA PEREIRA D D A, DE BOER A H. Dual role for 14-3-3 proteins and ABF transcription factors in gibberellic acid and abscisic acid signalling in barley(Hordeum vulgare)aleurone cells[J]. Plant, Cell & Environment, 2009, 32(5): 439-447.
    [71] SU T, WOLF S, HAN M, et al. Reassessment of an Arabidopsis cell wall invertase inhibitor AtCIF1 reveals its role in seed germination and early seedling growth[J]. Plant Molecular Biology, 2016, 90(1/2): 137-155.
    [72] TANG X F, SU T, HAN M, et al. Suppression of extracellular invertase inhibitor gene expression improves seed weight in soybean(Glycine max)[J]. Journal of Experimental Botany, 2016, 68(3): 469-482. http://pdfs.semanticscholar.org/251e/69fe10f024feb4a137162c1ecfc53cd2f8dd.pdf
    [73] SINGH A K, FU D Q, EL-HABBAK M, et al. Silencing genes encoding Omega-3 fatty acid desaturase alters seed size and accumulation of Bean pod mottle virus in soybean[J]. Molecular Plant-Microbe Interactions, 2011, 24(4): 506-515. doi: 10.1094/MPMI-09-10-0201
    [74] GU Y Z, LI W, JIANG H W, et al. Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size[J]. Journal of Experimental Botany, 2017, 68(11): 2717-2729. doi: 10.1093/jxb/erx147
    [75] LI J, NIE X, TAN J L, et al. Integration of epigenetic and genetic controls of seed size by cytokinin in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(38): 15479-15484. doi: 10.1073/pnas.1305175110
    [76] 万建民. 我国转基因技术研究现状[J]. 民主与科学, 2015, 5: 20-21. doi: 10.3969/j.issn.1003-0026.2015.05.004

    WAN J M. Research status of transgenic technology in China[J]. Democracy and Science, 2015, 5: 20-21. doi: 10.3969/j.issn.1003-0026.2015.05.004
    [77] LIU M, LI D M, WANG Z K, et al. Transgenic expression of ThIPK2 gene in soybean improves stress tolerance, oleic acid content and seed size[J]. Plant Cell, Tissue and Organ Culture, 2012, 111(3): 277-289. doi: 10.1007/s11240-012-0192-z
    [78] WANG H W, ZHANG B, HAO Y J, et al. The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants[J]. The Plant Journal: for Cell and Molecular Biology, 2007, 52(4): 716-729. doi: 10.1111/j.1365-313X.2007.03268.x
    [79] LEISHMAN M R. Does the seed size/number trade-off model determine plant community structure? An assessment of the model mechanisms and their generality[J]. Oikos, 2001, 93(2): 294-302. doi: 10.1034/j.1600-0706.2001.930212.x
    [80] MOLES A T. Being John Harper: using evolutionary ideas to improve understanding of global patterns in plant traits[J]. Journal of Ecology, 2018, 106(1): 1-18. doi: 10.1111/1365-2745.12887
    [81] 蔚荣海, 雷耔耘, 李羡宏, 等. 吉林省小粒大豆与大粒大豆某些品质性状的比较研究[J]. 吉林农业大学学报, 1998, 20(3): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-JLNY803.004.htm

    WEI R H, LEI Z Y, LI X H, et al. Study on comparison in quality properties of small grain and big grain soybean in Jilin Province[J]. Journal of Jilin Agricultural University, 1998, 20(3): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-JLNY803.004.htm
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  464
  • HTML全文浏览量:  198
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-08
  • 修回日期:  2021-11-15
  • 网络出版日期:  2022-03-10

目录

    /

    返回文章
    返回